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ABSTRACT

Some Contributions to Motives of Deligne-Mumford Stacks and Motivic Homotopy Theory

by
Utsav Choudhury

Vladimir Voevodsky constructed a triangulated category of motives to universally

linearize the geometry of algebraic varieties. In this thesis, I show that the geom-

etry of a bigger class of objects, called Deligne-Mumford stacks, can be universally

linearized using Voevodsky’s triangulated category of motives. Also, I give a partial

answer to a conjecture of Fabien Morel related to the connected component sheaf in

motivic homotopy theory.

Vladimir Voevodsky hat eine triangulierte Kategorie von Motiven konstruiert,

um die Geometrie algebraischer Varietäten “universell zu linearisieren”. In dieser

Dissertation zeige ich, dass auch die Geometrie einer umfangreicheren Klasse von

Objekten, nämlich von Deligne-Mumford stacks, mit Hilfe der triangulierten Kate-

gorie Voevodskys universell linearisiert werden kann. Ausserdem gebe ich eine par-

tielle Antwort auf eine Vermutung von Fabien Morel in Bezug auf die Zusammen-

hangskomponenten-Garbe in motivischer Homotopie-Theorie.



To mishti and dada
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PREFACE

A commonly applied technique in algebraic geometry is to attach to a given variety

X certain invariants in vector spaces, called cohomology. There are many cohomology

theories reflecting different structural properties of varieties. The theory of motives is

an attempt to find a universal way to study all the cohomology theories. It has a ge-

ometric side and a linear algebra side. On the geometric side, the aim is to construct

a universal cohomology theory from cycles. On the linear algebra side there are

vector spaces (cohomology theories) with certain relations and operations. In [62],

Voevodsky gave an idea of the geometric side. He constructed the triangulated cat-

egory of motives DM, equipped with a functor M : Sm/k → DM, where Sm/k

is the category of smooth k-schemes. The expected realisation functors from the

geometric side to the linear algebra side were given by Huber([31]), Ayoub ([7, 8]),

Ivorra ([32, 33]). The aim of the first part of this thesis is to extend the functor M

to the category of smooth separated Deligne-Mumford stacks.

Deligne-Mumford stacks are generalisation of schemes. They arise as solutions of

moduli problems in algebraic geometry. A moduli problem is a functor

F : Schop → Set, where Sch is the category of schemes. To give a solution to

the moduli problem is to represent this F by a scheme X. Often the moduli problem

has no solution as the objects they classify have nontrivial automorphisms. After

Deligne, Mumford and Artin ([53, 4]) a new tool, that of algebraic stacks became

of great help in studying moduli problems. The main philosophy is that moduli
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problems do not really live in the category of functors F : Schop → Sets but rather

in a 2-category of fibered categories over Sch. An algebraic stack, which arises as a

solution to a moduli problem, not only classifies objects but also the isomorphisms

of the objects. From this point of view algebraic stacks are more complicated objects

than schemes, but it has the distinct advantage of retaining formally useful prop-

erties like smoothness when the underlying coarse moduli space would not. In this

thesis, we work with the algebraic stacks introduced by Deligne-Mumford in [53].

Their definition is referred to as Deligne-Mumford stacks.

The study of Deligne-Mumford stacks from a motivic perspective began in [10]

where the notion of the DMC-motive associated to a proper and smooth Deligne-

Mumford stack was introduced as a tool for defining Gromov-Witten invariants.

The construction of the categoryMDM
k of DMC-motives uses A∗-Chow cohomology

theories for Deligne-Mumford stacks as described in [24, 37, 36, 44, 60, 20]. These

A∗-Chow cohomology theories coincide with rational coefficients. In [58, Theorem

2.1], Toen shows that the canonical functor Mk → MDM
k , from the category of

usual Chow motives, is an equivalence rationally. In particular, to every smooth and

proper Deligne-Mumford stack M , Toen associates a Chow motive h(M).

In the first part of the thesis we construct motives for smooth (but not necessarily

proper) Deligne-Mumford stacks as objects of Voevodsky’s triangulated category of

effective motives DMeff(k,Q). In the proper case, we compare these motives with the

Chow motives we get using Toen’s equivalence of categories Mk 'MDM
k . Without

assuming properness, our construction of the motive of a smooth Deligne-Mumford

stack F seems to be the first one.

The chapters are organised as follows.
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In the first chapter, we briefly review Morel-Voevodsky A1-homotopy category

H(k) ( resp. Hét(k)) and Voevodsky’s triangulated category of motives DMeff(k,Q).

We also construct the functor M : Hét(k)→ DMeff(k,Q). We recall those properties

of Deligne-Mumford stacks which we use in the next chapters.

In the second chapter we study motives of Deligne-Mumford stacks. Given a

presheaf of small groupoids F , we associate an object Sp(F ) in Hét(k). The motive

of F is defined to be M(F ) := M(Sp(F )). We then show that for a Deligne-Mumford

stack F and an étale atlas u : U → F we have an isomorphism M(U•) ∼= M(F ) in

DMeff(k,Q). Here U• is the C̆ech hypercovering corresponding to the atlas u : U →

F . In section 2.2, we compare the motive of a separated Deligne-Mumford stack F

with the motive of the coarse moduli space of F . If π : F → X is the coarse moduli

space of a separated Deligne-Mumford stack F , we show that the natural morphism

M(F )→M(X) is an isomorphism in DMeff(k,Q). We then prove projective bundle

formula and blow-up formula for smooth Deligne-Mumford stacks. We also construct

the Gysin triangle associated to a smooth, closed substack Z of a smooth Deligne-

Mumford stack F .

In section 2.3, we show that for any smooth and separated Deligne-Mumford stack

F over a field of characteristic zero, the motive M(F ) is a direct factor of the motive

of a smooth quasi-projective scheme. If F is proper we may take this scheme to be

projective.

In section 2.4, we show that the motivic cohomology of a Deligne-Mumford stack

(see [36, 3.0.2]) is representable in DMeff(k,Q).

Finally in section 2.5 we compare our construction with Toen’s construction and

prove that for any smooth and proper Deligne-Mumford stack F there is a canonical

isomorphism ι ◦ h(F ) ∼= M(F ); this is Theorem II.27. Here ι :Meff
k → DMeff(k,Q)
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is the fully faithful embedding described in [47, Proposition 20.1].

In the third chapter we study motivic decomposition of relative geometrically

cellular Deligne-Mumford stacks. The results in this chapter are part of a joint

project with Jonathan Skowera (see [16]). A relative geometrically cellular Deligne-

Mumford stack is a smooth and separated Deligne-Mumford stack equipped with an

increasing sequence of closed substacks whose successive differences, called cells, are

affine fibrations over proper Deligne-Mumford stacks, called bases.

Even for varieties, our notion of relative cellularity is more general than the pre-

vious one given by Karpenko [38] (see also [27, Definition 3.1]: instead of asking that

the fibers of the map from a cell to its base are affine spaces, we only ask so for the

geometric fibers. By a result of Karpenko [38, Corollary 6.11], the Chow motive of a

relative cellular variety decomposes into the direct sum of the Chow motives of the

bases suitably shifted and twisted. We generalize this decomposition of Karpenko to

include geometrically cellular Deligne-Mumford stacks (proposition III.13). In the

classical case of relative cellular varieties, our method gives a simpler and more con-

ceptual proof of Karpenko’s decomposition theorem integrally. Our proof relies on

a vanishing theorem of Voevodsky [62, Corollary 4.2.6] which says that there are no

nonzero morphisms between motives of the form M(X) and M(Y )[1] for X and Y

proper and smooth varieties.

In the last chapter, we study the homotopy invariance property of the connected

component sheaves of spaces in the motivic homotopy theory setting. A functor

X : 4op → PSh(Sm/k) is called a simplicial presheaf or a space. Here 4 is the

category of simplices.
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For any space X , define πA1

0 (X ) to be the presheaf

U ∈ Sm/k 7→ HomH(k)(U,X ).

The presheaf πA1

0 (X ) is homotopy invariant, i.e., for any U ∈ Sm/k the morphism

πA1

0 (X )(U)→ πA1

0 (X )(A1
U), induced by the projection A1

U → U , is bijective.

Let aNis : PSh(Sm/k) → ShNis(Sm/k) denote the Nisnevich

sheafification functor. The following conjecture of Morel states that the above prop-

erty remains true after Nisnevich sheafification.

Conjecture .1. For any U ∈ Sm/k, the morphism

aNis(π
A1

0 (X ))(U)→ aNis(π
A1

0 (X ))(A1
U),

induced by the projection A1
U → U , is bijective.

We prove the conjecture (theorem IV.23) for H-groups (definition IV.9) and ho-

mogeneous spaces on these (see definitions IV.11, IV.12).

Voevodsky proved (see [47, Theorem 22.3]) that for any homotopy invariant

presheaf with transfers S, the sheafification aNis(S) is a homotopy invariant sheaf

with transfers. The proof is quite hard. It becomes harder if we consider gen-

eral homotopy invariant presheaves (without transfers). For any homotopy invariant

presheaf of sets S on Sm/k, one can ask to which extent the analogue of Voevodsky’s

result is true for S. Our results in this paper show that if S is a presheaf of groups,

the canonical morphism S → aNis(π
A1

0 (S)) is universal among all the morphisms

from S to homotopy invariant sheaves of sets.

The thesis ends with two appendixes. In Appendix 5.1, we show that some natu-

rally defined functor ω :Meff
k → PSh(Vk) is fully faithful (see V.1). This statement

appears without proof in [55, 2.2] and is mentioned in [58, page12]. It is also needed
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in the proof of II.27. In Appendix 5.2 we provide a technical result used in Appendix

5.1.
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CHAPTER I

Introduction

In this chapter we review the results that we will use later. In the first section,

we briefly review the constructions in motivic homotopy theory and Voevodsky’s

triangulated category of motives. In the second section we review some properties

of Deligne-Mumford stacks.

1.1 Motivic homotopy theory and Voevodsky’s triangulated category of
motives

Recall that 4 is the category of simplices. The objects of this category are

finite ordinals thought of as totally ordered sets, the morphisms are order preserving

functions. The category of simplicial sets, denoted by 4opSets, is the category of

functors F : 4op → Sets. Let Sm/k be the category of smooth separated finite

type k-schemes and denote PSh(Sm/k) the category of presheaves of sets on Sm/k.

Also denote 4opPSh(Sm/k) the category of spaces, i.e., presheaves of simplicial

sets. We denote by Hét
s (k) (resp. Hs(k)) the homotopy category of 4opPSh(Sm/k)

with respect to the étale (resp. Nisnevich) local model structure, i.e., obtained by

inverting formally the étale (resp. Nisnevich) local weak equivalences. Following [48,

§3.2], we consider the Bousfield localisation of the étale (resp. Nisnevich) local model

structure on 4opPSh(Sm/k) with respect to the class of maps X × A1 → X for all
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spaces X . The resulting model structure will be called the étale (resp. Nisnevich)

motivic model structure. The homotopy category with respect to this étale (resp.

Nisnevich) motivic model structure is denoted by Hét(k)(resp H(k)). (We warn the

reader that in [48, §3.2] the Nisnevich topology is used instead of the étale topology.)

Remark I.1. Denote (4opPSh(Sm/k))• the category of pointed spaces, i.e., presheaves

of pointed simplicial sets on Sm/k. We also have the pointed versions of the local

and motivic model structures where weak equivalences are detected after forgetting

the base point. The pointed étale (resp. Nisnevich) homotopy category is denoted

by Hét
s,•(k) (resp. Hs,•(k)). The pointed étale (resp. Nisnevich) motivic homotopy

categoriy is denoted by Hét
• (k) (resp. H•(k)).

For the projective global model structure on 4opPSh(Sm/k), the weak equiv-

alences (resp. fibrations) are the sectionwise weak equivalences (resp. fibrations).

Cofibrations are defined using the left lifting property with respect to the trivial

fibrations. The left Bousfield localisation with respect to the étale (resp. Nisnevich)

hypercovers gives the étale (resp. Nisnevich) local projective model structure. We

can further localise the étale (resp. Nisnevich) local projective model structures

with respect to the class of maps X ×A1 → X . The resulting homotopy category is

equivalent to Hét(k) (resp. H(k)).

Let Grpd be the category of small groupoids and let Grpd(Sm/k) be the category

of presheaves of small groupoids on Sm/k.

For any X ∈ 4opSets, the fundamental groupoid π(X) is defined to be the free

groupoid on the path category P (X). Ob(P (X)) = X0, and P (X) is generated as a

category by the 1-simplices x → y of X subject to the relation d1(σ) = d0(σ)d2(σ)

for each 2-simplex σ of X. This gives a functor π : 4opPSh(Sm/k)→ Grpd(Sm/k).
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The functor π : 4opSets → Grpd has a right adjoint, Ner : Grpd → 4opSets,

given by for any simplicial degree k and any groupoid G,

Ner(G)k := HomGrpd(π(4k), G).

Hence Ner : Grpd(Sm/k)→4opPSh(Sm/k) is right adjoint to

π : 4opPSh(Sm/k)→ Grpd(Sm/k).

For the étale (resp. Nisnevich) local model structure on Grpd(Sm/k), a morphism

f : G→ H in Grpd(Sm/k) is an étale (resp. Nisnevich) local weak equivalence (resp.

fibration) if Ner(f) : Ner(G) → Ner(H) is an étale (resp. Nisnevich) local weak

equivalence (resp. fibration). Cofibrations are the morphisms which has the left

lifting property with respect to the trivial fibrations.

Recall that SmCor(k) is the category of finite correspondences. Objects of this

category are smooth k-schemes X. For X, Y ∈ Sm/k, HomSmCor(k)(X, Y ) is given

by the group of finite correspondences Cor(X, Y ). This is the free abelian group

generated by integral closed subschemes W ⊂ X × Y which are finite and surjective

on a connected component of X. Thus, if X =
∐

iXi we have

Cor(X × Y ) =
⊕
i

Cor(Xi × Y )

.

A presheaf with transfers is a contravariant additive functor on SmCor(k). De-

note by PST (k,Q) the category of presheaves with transfers with values in the

category of Q-vector spaces. A typical example is given by Qtr(X) for X ∈ Sm/k.

This presheaf associates to each U ∈ Sm/k the vector space Cor(U,X)⊗Q.

Analogous to the local and motivic model category structures on the category of

spaces, we have a local and a motivic model structures on the categoryK(PST (k,Q))
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of complexes of presheaves with transfers. A morphism K → L in K(PST (k,Q))

is an étale weak equivalence if it induces quasi-isomorphisms on stalks for the étale

topology (or the Nisnevich topology; it doesn’t matter in the presence of transfers).

Cofibrations are monomorphisms and fibrations are characterized by the right lifting

property. This gives the local model category structure on K(PST (k,Q)) (cf. [5,

Theorem. 2.5.7]). The homotopy category is nothing but the derived category of

étale sheaves with transfers D(Str(Sm/k,Q)). (Here Str(Sm/k,Q) is the category

of étale sheaves with transfers).

The motivic model structure is the Bousfield localisation of the local model

structure with respect to the class of morphisms Qtr(A1 × X)[n] → Qtr(X)[n] for

X ∈ Sm/k and n ∈ Z. The resulting homotopy category with respect to the mo-

tivic model structure is denoted by DMeff(k,Q). This is Voevodsky’s triangulated

category of mixed motives (with rational coefficients).

The functor Qtr(−) : Sm/k → PST (k,Q) extends to a functor

Qtr : PSh(Sm/k)→ PST (k,Q)

given by Qtr(F ) = ColimX→F Qtr(X) for any presheaf of sets F on Sm/k.

Let A be a simplicial abelian group. The normalized chain complex associated to

A is the complex NA, such that for all n ∈ N, NAn :=
⋂n−1
i=0 kerdi ⊂ An, and the

differential is given by δ =
∑n

i=0(−1)idi.

In the next statement, N(−) denotes the functor that associates the presheaf of

normalized chain complex to a simplicial abelian presheaf (cf. [25, page 145]).

Proposition I.2. There exists a functor M : Hét(k) → DMeff(k,Q). It sends a

simplicial scheme X• to NQtr(X•).
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Proof. This is well known. We give a sketch of proof here. The functor Qtr(−) :

PSh(Sm/k)→ PST (k,Q) extends to a functor

NQtr(−) : 4opPSh(Sm/k)→ K(PST (k,Q)).

There is a functor Γ : K(PST (k,Q)) → 4opPSh(Sm/k) right adjoint to NQtr (cf.

[25, page 149]). We will show that the pair (NQtr,Γ) is a Quillen adjunction for the

projective motivic model structures. (These model structures are different from the

ones described above: they have the same weak equivalences but the cofibrations in

the projective ones are defined by the left lifting property with respect to section-

wise trivial fibrations of presheaves of simplicial sets and surjective morphisms of

complexes of presheaves with transfers respectively.)

The functor Γ takes section-wise weak equivalences in K(PST (k,Q)) to section-

wise weak equivalences in 4opPSh(Sm/k) and it takes surjective morphisms to

section-wise fibrations in 4opPSh(Sm/k). Hence for the projective global model

structures the pair (NQtr,Γ) is a Quillen adjunction. By [19, Theorem 6.2] the pro-

jective étale local model structure on 4opPSh(Sm/k) is the Bousfield localisation of

the global projective model structure with respect to general hypercovers for the étale

topology. Let S be the class of those hypercovers. To show that the pair (NQtr,Γ)

is a Quillen adjunction for the étale local model structures, we need to show that the

left derived functor of NQtr maps morphisms in S to étale local weak equivalences

in K(PST (k,Q)). For this it is enough to show that Γ maps a local fibrant object

C• of K(PST (k,Q)) to an S-local object of 4opPSh(Sm/k). Showing that Γ(C•)

is S-local is equivalent to showing that the étale hypercohomology Hn
ét(X,C•) is iso-

morphic to Hn(C•(X)) for any X ∈ Sm/k and n ≥ 0. Now, the hypercohomology

Hn
ét(X,C•) can be calculated using C̆ech hypercovers U• → X and moreover by [47,

Prop 6.12] the complex Qtr(U•) is a resolution of the étale sheaf Qtr(X). Since C• is
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local fibrant we have

Hn(C•(X)) = HomHo(K(PST (k,Q)))(Qtr(U•), C•[n]) = Hn(Tot(C•(U•))).

(Here Ho(K(PST (k,Q))) is the homotopy category with respect to global projective

model structure on K(PST (k,Q)).) Now passing to the colimit over hypercovers

U• → X we get Hn
ét(X,C•)

∼= Hn(C•(X)).

At this point we get a functor Hét
s (k) → D(Str(Sm/k)) and it remains to show

that this functor takes the maps X ×A1 → X to motivic weak equivalences. This is

clear by construction.

Remark I.3. There is also a functor M : Hét(k) → DMeff, ét(k,Z) to Voevodsky’s

category of étale motives with integral coefficients. It is constructed exactly as above.

(Note that with integral coefficients, the categories of étale and Nisnevich motives are

different: we denote them DMeff, ét(k,Z) and DMeff(k,Z) respectively; with rational

coefficient these categories are the same.)

Let 4• be the cosimplicial scheme defined by :

4n = Spec(k[x0, . . . , xn]/(
n∑
i=0

xi = 1).

The j-th face map δj is given by the equation xj = 0. Given a presheaf of abelian

groups F on Sm/k, we can construct the simplicial abelian group C•F such that for

any U ∈ Sm/k, C•F (U)n = F (U × 4n). Let C∗F := N(C•F ) be the associated

normalized complex of presheaf with transfers.

Definition I.4. For every integer q ≥ 0 and any abelian group A the motivic complex

A(q) is defined as the following complex of presheaves with transfers :

A(q) = C∗Atr(G∧qm )[−q].
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Definition I.5. For any abelian group A, the étale (or Lichtenbaum) motivic coho-

mology of X is defined as the étale hypercohomology of A(q):

Hp,q
L (X,A) = Hp

et(X,A(q)|Xet)

and the motivic cohomology groups Hp,q(X,A) is defined as the Zariski hypercoho-

mology

Hp,q(X,A) = Hp
Zar(X,A(q)).

The following properties of DMeff (k,Q) will be useful in the next chapters.

Properties I.6. 1. If E → X is a vector bundle, then the induced morphism

M(E)→M(X) is an isomorphism. If P(E)→ X is a projective bundle of rank

n+ 1, then

⊕ni=0M(X)(i)[2i] ∼= M(P(E)).

2. Assume that resolution of singularities holds over k. Let X ′ → X be a blow-up

with center Z, and set Z ′ = Z ×X X ′. There is a distinguished triangle :

M(Z ′)→M(X ′)⊕M(Z)→M(X)→M(Z ′)[1].

Moreover if X and Z are smooth , and Z has codimension c, then

M(X ′) ∼= M(X)⊕ (⊕c−1
i=1M(Z)(i)[2i]).

3. Let X be a smooth scheme over a perfect field and let Z be a smooth closed

subscheme of X of codimension c. Then there is a Gysin triangle :

M(X \ Z)→M(X)→M(Z)(c)[2c]→M(X \ Z)[1].

4. For any abelian group A, H2i,i(X,A) = CH i(X)⊗A. If A is a Q-vector space,

then

Hn,i(X,A) ∼= Hn,i
L (X,A) ∼= HomDMeff (k,Q)(M(X), A(i)[n]).
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5. There exists a fully faithful embedding ι : Meff
k → DMeff (k,Q), such that

ι(h(X)) ∼= M(X) for smooth and projective X. Here, Meff
k is the category of

effective Chow motives with rational coefficients and h(X) is the Chow motive

of the smooth projective variety X.

1.2 Deligne-Mumford stacks

Let C be any category. Consider 2−Fun(Cop, Grpd) the category of lax 2-functors

from C to Grpd. Recall that a lax 2-functor F associates to X ∈ C a groupoid F (X),

to f : Y → X a functor F (f) : F (X) → F (Y ), and to composable morphisms f

and g an isomorphism F (f) ◦F (g) ∼= F (g ◦ f). The 1-morphisms between two lax 2-

functors F and G are lax natural transformations H such that for any f : Y → X ∈ C

there is a natural isomorphism between the fucntors G(f) ◦HX and HY ◦ F (f). For

any composable morphisms f and g, we have the usual compatibility conditions.

2-isomorphisms between lax transformations H and H ′ are given by isomorphisms

of functors aX : HX
∼= H ′X for each X ∈ C, such that for any f : Y → X we have

G(f)(aX) = aY (F (f)).

For objects X, Y ∈ C, consider the set HomC(Y,X) as a discrete groupoid, i.e,

all morphisms are identities. In this way, the functor HomC(−, X) : C → Grpd is a

strict 2-functor which we denote by h(X).

Lemma I.7. Let F ∈ 2−Fun(Cop, Grpd). There is a surjective equivalence of cate-

gories Hom2−Fun(Cop,Grpd)(h(X), F )→ F (X) given by evaluating at idX ∈ h(X)(X).

Proof. Given any lax natural transformation H : h(X)→ F we get an object X ′ :=

HX(idX) ∈ F (X). Given two lax natural transformations H,H ′ and a 2-isomorphism

a between them, we get an isomorphism aX(idX) : HX(idX) ∼= H ′X(idX). Let X ′ ∈

F (X). We have a natural transformation given by GY (f : Y → X) = F (f)(X ′).
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Since F is a lax presheaf we have F (f ◦ g)(X ′) ∼= F (g) ◦ F (f) for any Z
g−→ Y

f−→ X.

Hence we get the required natural transformation between F (g) ◦ GY and GZ ◦

h(X)(g). Moreover let H, G : h(X) → F such that there exists a morphism f :

HX(idX)→ GX(idX) ∈ F (X). We define a unique 2-isomorphism a between H and

G in the following way. For any g ∈ h(X)(Y ) we have HY (g) ∼= F (g)(HX(idX))

given by the structure of the lax natural transformation. Similarly we get GY (g) ∼=

F (g)(GX(idX)). But then there exists F (g)(f) : F (g)(HX(idX)) ∼= F (g)(GX(idX)).

So aY (g) : HY (g) ∼= GY (g) and aX(idX) : HX(idX)→ GX(idX) is equal to f .

Remark I.8. In general Hom2−Fun(Cop,Grpd)(h(X), F ) is not small unless C is small.

Let Sch/k be the category of finite type k-schemes. We fix C ⊂ Sch/k which is

a full small subcategory equivalent to Sch/k. For any X ∈ Sch/k and F ∈ 2 −

Fun((Sch/k)op, Grpd) the association X 7→ Hom2−Fun(Cop,Grpd)(h(X)|C , F |C) gives

a strict presheaf of groupoids. We denote it by hst(F ) . By I.7 we have an equivalence

F |C ∼= hst(F )|C.

Let F : (Sch/k)op → Grpd be a lax 2-functor.

Definition I.9. The functor F is a stack in the étale topology if it satisfies the

following axioms (descent) where {fi : Ui → U}i∈I is an étale covering of U ∈ Sch/k

and fij,i : Ui ×U Uj → Ui are the projections.

1. (Glueing of morphisms) If X and Y are two objects of F (U), and φi : F (fi)(X) ∼=

F (fi)(Y ) are isomorphisms such that F (fij,i)(φi) = F (fij,j)(φj), then there ex-

ists an isomorphism η : X ∼= Y such that F (fi)(η) = φi.

2. (Separation of morphisms) If X and Y are two objects of F (U), and φ : X ∼= Y ,

ψ : X ∼= Y are isomorphisms such that F (fi)(φ) = F (fi)(ψ), then φ = ψ.
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3. (Glueing of objects) If Xi are objects of F (Ui) and φij : F (fij,j)(Xj) ∼= F (fij,i)(Xi)

are isomorphisms satisfying the cocycle condition

(F (fijk,ij)(φij)) ◦ (F (fijk,jk)(φjk)) = F (fijk,ik)(φik),

then there exist an object X of F (U) and φi : F (fi)(X) ∼= Xi such that φji ◦

(F (fij,i)(φi)) = F (fij,j)(φj).

Remark I.10. 1. Any presheaf of groupoids that satisfies descent with respect to

every C̆ech cover satisfies descent with respect to every hypercover [19, corollary

A.9]. Let F : (Sch/k)op → Grpd be a lax 2-functor. The strict presheaf of

groupoids hst(F ) is a stack if and only if F is a stack by [29]. So F is a stack if

and only if Ner(hst(F )) is fibrant in the étale local projective model structure.

2. There is a notion of strict stacks (see [29], [35]). If F is a strict presheaf

of groupoids then by [35, lemma 7, lemma 9] there exists a strict stack St(F )

and a morphism st : F → St(F ) such that st is a local weak equivalence, i.e.,

st induces equivalences of groupoids on stalks. The stack St(F ) is called the

associated stack of F and the functor is called the stackification functor.

Definition I.11. Let F,G,H ∈ Grpd(Sch/k), such that there exists morphisms

f : G → F and g : H → F . The homotopy fiber product G ×F H is defined as

follows : For any X ∈ Sm/k, the objects of G ×F H are tuples (x1, x2, a), where

x1 ∈ Ob(G(X)), x2 ∈ Ob(H(X)), and a : f(x1) → g(x2). A morphism between

(x1, x2, a) → (y1, y2, b) is a tuple (α, β) such that α : x1 → y1 and β : x2 → y2, and

we have the following commutative digram :

f(x1)
f(α) //

a

��

f(y1)

b
��

g(x2)
g(β) // g(y2)
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Remark I.12. If F,G,H are presheaves of discrete groupoids, i.e., presheaves of

sets, then the homotopy fiber product is the usual fiber product.

Definition I.13. Let F,G ∈ Grpd(Sch/k). A morphism f : F → G is called

representable by a scheme, if for any g : h(X) → G, where X is a k-scheme, the

homotopy fiber product h(X)×G F ∼= h(Y ) for some scheme Y .

Let P be a property of morphisms f : X → Y of schemes, stable by base change

and local for the étale topology on Y . For example, surjective, separated, quasicom-

pact, open(closed) immersions, affine (quasi affine), finite (quasi finite), proper, flat,

unramified, smooth, étale morphisms satisfies this property.

Definition I.14. A representable morphism f : F → G of stacks has property P ,

if for any scheme U and a morphism u : h(U) → G, the canonical morphism of

schemes h(U)×G F → h(U) has property P .

For any groupoid object R ⇒ U in Sch/k we can associate a strict presheaf of

groupoids h(R ⇒ U) (see proof of lemma I.24).

Definition I.15. A Deligne-Mumford stack F is a stack on Sch/k admitting a local

equivalence (stalk-wise equivalence in the étale topology) h(R ⇒ U) → F , where

R ⇒ U is a groupoid object in Sch/k, such that both morphisms R → U are étale

and R→ U ×k U is finite.

Remark I.16. Recall (see [46, 53]), that a separated finite type Deligne-Mumford

stack is a stack F , such that the diagonal 4 : F → F ×k F is representable and

finite and there exists an étale surjective morphism a : U → F . It is clear that,

U ×F U ⇒ U is a groupoid object in Sch/k, h(U ×F U ⇒ U)→ F is an étale weak

equivalence and both projections U ×F U → U are étale and U ×F U → U ×k U is

finite.
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Conversely, let R ⇒ U be a groupoid object in Sch/k, such that both morphisms

R → U are étale and R → U ×k U is finite. Recall that there exists a separated

Deligne-Mumford stack F and an étale local weak equivalence h(R ⇒ U) → F such

that U → F is étale and surjective and R ∼= U ×F U . If F ′ is any other stack

equipped with an étale local weak equivalence h(R ⇒ U)→ F , then F ∼= F ′. Hence,

our definition of a Deligne-Mumford stack is equivalent to that of separated finite

type Deligne-Mumford stack from [46, 53]. The morphism p : U → F is called an

atlas of F . F is smooth if and only if U is smooth.

Definition I.17. Let F be a Deligne-Mumford stack. A coarse moduli space for F is

a map π : F → X to an algebraic space X such that π is initial among maps from F

to algebraic spaces, and for every algebraically closed field k the map [F (k)]→ X(k)

is bijective (where [F (k)] denotes the set of isomorphism classes of objects in the

small category F (k)).

Theorem I.18. For any separated finite type Deligne-Mumford stack F . There

exists a coarse moduli space π : F → X. The morphism π is proper and an universal

homeomorphism, and the space X is separated. Moreover, if char(k) = 0 and Y → X

any morphism of schemes, then Y is the moduli space of the Deligne-Mumford stack

F ×X Y .

Proof. [39, 18].

Remark I.19. Since the morphism π : F → X is a proper universal homeomor-

phism, F is proper if and only if X is proper.

Example I.20. Let X be a finite type k-scheme and let G be a smooth affine group

scheme acting on X such that the geometric stabilizers of the geometric points are

finite and reduced. The quotient lax-presheaf of groupoids [X/G] is defined as follows.



13

For any scheme Y , the objects of [X/G](Y ) are G-principal bundles E → Y together

with a G-equivariant map f : E → X. Morphisms from (E → Y,E → X) to

(E ′ → Y,E ′ → X) is given by G-equivariant isomorphism g : E → E ′. For any

h : Y ′ → Y , the restriction morphism is given by fixing some pullback of a G-bundle

over Y to Y ′. This is a Deligne-Mumford stack. It is separated if and only if the

action is proper.

If G is finite and X is separated, then the geometric quotient X/G exists in the

category of algebraic spaces. By [43, corollary 2.15] X/G is also the categorical

quotient in the category of algebaric spaces. Hence X/G is the coarse moduli space of

[X/G] (this can be extended to G affine reductive group acting properly on a scheme

X).

Theorem I.21. Let F be a Deligne-Mumford stack, and let p : F → X be its coarse

moduli space. Then, there exists an étale covering (Ui → X)i∈I of X, and finite

groups Gi, and quasi-projective schemes Xi with an action of Gi, such that for all

i ∈ I, the Deligne-Mumford stacks F×XUi is equivalent to the quotient stack [Xi/Gi].

Proof. [60, 2.8] [59, Prop 1.17]

Remark I.22. Let F be a Deligne-Mumford stack, and let X be its coarse moduli

space. Suppose ([Xi/Gi]→ F )i∈I be the étale covering of F deduced from the covering

of moduli space (Xi/Hi → X)i∈I as in the previous theorem. Then [Xi/Gi] ×F

[Xj/Gj] ∼= [(Xj ×X (Xi/Hi))/Hj], and hence a quotient stack.

Remark I.23. Let F, F ′ be Deligne-Mumford stacks. Let U → F be an atlas of

F . Let s and t be the morphisms U ×F U → U associated to the groupoid object

(U ×F U ⇒ U). Suppose f : U → F ′ is given such that s ◦ f ∼= t ◦ f in F ′(U ×F U)

which satisfies cocycle condition in F ′(U ×F U ×F U). Then we get a morphism
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f : F → F ′ as follows. For any x ∈ F (T ) we get a map of local sections U×F T → T

and an element F ′(U×F T ) together with a glueing data on U×F U×F T and cocycle

condition. This defines an element in F ′(T ). More generally for any class of objects

which satisfy descent, i.e., which can be defined étale locally by glueing data, we can

define the corresponding objects over stacks by glueing-data on one atlas.

For example, let F be a separated Deligne-Mumford stack, and let U → F be an

atlas. Let Z be a closed substack of F . The blow-up of F centerd at Z is defined as

follows. Let R := U ×F U and let (R ⇒ U) be the associated groupoid scheme. Let

ZU and ZR be the pullback of Z to U and R respectively. Using universal property

of blow-ups and the fact that blow-ups commutes with smooth base change, we get

an étale groupoid scheme (BlZR
(R) ⇒ BlZU

(U)), and morphism of groupoid objects

(BlZR
(R) ⇒ BlZU

(U)) → (R ⇒ U). We get a separated Deligne-Mumford stack

BlZ(F ), which is the stackification of (BlZR
(R) ⇒ BlZU

(U)). To construct the

morphism f : BlZ(F ) → F , we follow the description given in the first paragraph.

The morphism f is representable and projective. For any atlas U → F , the pullback

U ×F U ∼= BlZU
(U). One can similarly give constructions of vector bundles and

porjective bundles.

Given an atlas f : U → F of a smooth Deligne-Mumford stack F , we get a

simplicial object U• in Sm/k by defining Ui = U ×F · · · ×F U (i+ 1 times) and the

face and degeneracy maps are defined by relative diagonal and partial projections.

Lemma I.24. For R ⇒ U as above we have Ner(h(R ⇒ U)) = U•.

Proof. By definition we have Ob(h(R ⇒ U)(S)) = HomSm/k(S, U) and Mor(h(R ⇒

U)(S)) = HomSm/k(S,R). The set of two composable morphisms in h(R ⇒ U)(S)

is (R ×U R)(S) where R ×U R is the fiber product of the maps s : R → U and
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t : R → U . More generally the set of n-composable morphisms in h(R ⇒ U)(S) is

R ×U R ×U · · · ×U R (n times). Since R ∼= U ×F U and the maps s and t are first

and second projections respectively we have

(Ner(h(R ⇒ U)))n(S) = (U ×F U)×U · · · ×U (U ×F U)︸ ︷︷ ︸
n times

which is isomorphic to Un.

Theorem I.25. Let U → F be an atlas for a smooth Deligne-Mumford stack F .

There is a canonical étale local weak equivalence U• → Sp(F ).

Proof. We know that h(R ⇒ U) is locally weakly equivalent to F . Hence the mor-

phism Ner(h(R ⇒ U))→ Sp(F ) is a local weak equivalence. The claim follows now

from lemma I.24.

Definition I.26. The étale site Fét is defined as follows. The objects of Fét are

couples (X, f) with X a scheme and f : X → F a representable étale morphism. A

morphism from (X, f) to (Y, g) is a couple (φ, α), where φ : X → Y is a morphism

of schemes and α : f ∼= g ◦ φ is a 2-isomorphism. Covering families of an object

(U, u) are defined as families {ui : Ui → U}i∈I such that the ui’s are étale and ∪ui :∐
i Ui → U is surjective.

For each integer i let Q(i) ∈ DMeff(k,Q) denote the motivic complex of weight i

with rational coefficients (see definition I.4).

Definition I.27. Let F be a Deligne-Mumford stack. The motivic cohomology of F

with rational coefficients is defined as H2i−n
M (F, i) := H2i−n(Fét,Q(i)|Fét

).

Remark I.28. In [36, 3.0.2], motivic cohomology of an algebraic stack F is defined

using the smooth site of F . For Deligne-Mumford stacks, this coincides with our

definition by [36, Proposition 3.6.1(ii)].
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For a Deligne-Mumford stack F , consider the sheaf of the m-th K-groups Km on

Fet associated with the presheaf

Km : Fet → Ab

U 7→ Km(U).

Definition I.29. The codimension m-rational Chow group of F is defined as

Am(F ) := Hm(Fet,Km ⊗Q)

.

Remark I.30. By [36, Theorem 3.1, 5.3.10], we have a functorial isomorphism

Am(F ) ∼= H2m
M (F,m)Q.

Recall the construction of the category of Chow motives for smooth and proper

Deligne-Mumford stacks using the theory A∗ ([10, §8]). For proper smooth Deligne-

Mumford stacks F and F ′, the vector space of correspondences of degree m between

F and F ′ is defined to be

Sm(F, F ′) := {x ∈ A∗(F × F ′)/(p2)∗(x) ∈ Am(F ′)} ,

where p2 : F × F ′ → F ′ is the second projection. We have the usual composition

◦ : Sm(F, F ′)⊗ Sn(F ′, F ′′)→ Sp+m(F, F ′′)

given by the formula

x ◦ y := (pr13)∗(pr
∗
12(x).pr∗23(y)),

where the prij are the natural projections of F ×F ′×F ′′ on two of the three factors.

Objects of MDM
k are triples (F, p,m), such that F is a smooth proper Deligne-

Mumford stack, p is an idempotent in the ring of correspondences S0(F, F ), and
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m ∈ Z. The vector space of morphisms between (F, p,m) and (F ′, q, n) is given by

HomMDM
k

((F, p,m), (F ′, q, n)) := q ◦ Sn−m(F, F ′) ◦ p ⊂ Sn−m(F, F ′).

The full subcategory ofMDM
k consisting of objects (F, p, 0) is called the category

of effective Chow motives and we denote it by MDM, eff
k . The category MDM

k is a

Q-linear symmetric monoidal karoubian category.

Theorem I.31. There is a natural fully faithful tensorial functor

Mk →MDM
k ,

which is an equivalence of Q-tensorial category.

Proof. [58, theorem 2.1].



CHAPTER II

Motives of Deligne-Mumford Stacks

In this chapter we first define the motive of any lax presheaf of groupoids on Sm/k

(II.1). By lemma II.2 we get a resolution of M(F ) by the motive of any C̆ech cover,

where F is a smooth Deligne-Mumford stack. The isomoprhism between motive of

a smooth Deligne-Mumford stack and motive of its coarse moduli space is given in

theorem II.6. The main formulas, which are useful for computations, are theorem

II.7, proposition II.10 and theorem II.13. We prove in theorem II.20 that motive

of a smooth separated Deligne-Mumford stack is a direct factor of a smooth quasi-

projective variety. We end this chapter with the comparison theorem II.27. The

results in this chapter are part of [15].

2.1 The general construction

In this section we describe our construction of the motive associated to a smooth

Deligne-Mumford stack. In fact, our construction applies more generally to any stack

but the existence of atlases can be used to give explicit models.

Definition II.1. Let F ∈ 2−Fun((Sch/k)op, Grpd). Then the motive of F is defined

as M(F ) := M(Sp(F )). This gives a functor

M : 2− Fun((Sch/k)op, Grpd)→ DMeff(k,Q).

18
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Using I.3 we can also define an integral version of the motive of F , which we also

denote M(F ) if no confusion can arise.

Lemma II.2. Let U → F be an atlas for a smooth Deligne-Mumford stack F . The

canonical map M(U•) → M(F ) in DMeff(k,Q) is an isomorphism. (This is also

true integrally.)

Proof. This follows from proposition I.2 and theorem I.25.

Let F ′ → F be a morphism of strict presheaves of groupoids. Let F ′• be the

simplicial presheaf of groupoids such that F ′i := F ′×F F ′×F · · · ×F F ′ (i+ 1 times).

Let Ner(F ′•) be the bi-simplicial presheaf such that Ner(F ′•)•,i := Ner(F ′i ). Let

diag(Ner(F ′•)) be the diagonal.

Lemma II.3. Let p : F ′ → F be an étale, representable, surjective morphsim of

Deligne-Mumford stacks (here stacks are strict presheaves of groupoids). Then the

canonical morphism

diag(Ner(F ′•))→ Ner(F )

is an étale local weak equivalence.

Proof. Let U → F be an atlas and U• be the associated C̆ech simplicial scheme.

Let U ′•,• be the bi-simplicial algebraic space such that U ′•,i := U• ×F F ′i for i ≥ 0.

Hence, U ′j,• := Uj ×F F ′• for j ≥ 0. There are natural morphisms diag(U ′•,•) →

diag(Ner(F ′•)) and diag(U ′•,•) → U•. For i, j ≥ 0, U ′•,i → F ′i and U ′j,• → Uj are

étale C̆ech hypercovering, hence U ′•,i → Ner(F ′i ) and U ′j,• → Uj are étale local weak

equivalences. By [14, XII.3.3]

diag(U ′•,•)
∼= hocolimn∈4(U ′•,n) ∼= diag(Ner(F ′•))

and

diag(U ′•,•)
∼= hocolimn∈4(U ′n,•)

∼= U•.
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This proves the lemma.

2.2 Motives of Deligne-Mumford Stacks, I

In this section, we first show that the motive of a separated Deligne-Mumford

stack is naturally isomorphic to the motive of its coarse moduli space. We also prove

blow-up and projective bundle formulas for smooth Deligne-Mumford stacks. We

end the section with the construction of the Gysin triangle associated with a smooth

closed substack Z of a smooth Deligne-Mumford stack F .

2.2.1 Motive of coarse moduli space

Let X be a scheme and let G be a group acting on X. Then G acts on the presheaf

Qtr(X). Let Qtr(X)G be the G-coinvariant presheaf, such that for any Y ∈ Sm/k

we have Qtr(X)G(Y ) := (Qtr(X)(Y ))G.

Lemma II.4. Let X be a smooth quasi-projective scheme and let G be a finite group

acting on X. Let [X/G] be the quotient Deligne-Mumford stack and X/G be the

quotient scheme. Then

1. M([X/G]) ∼= Qtr(X)G in DMeff(k,Q);

2. Qtr(X/G) ∼= Qtr(X)G as presheaves.

Hence the canonical morphism M([X/G]) → Qtr(X/G) is an isomorphism in

DMeff(k,Q).

Proof. To deduce (1), we observe that the morphism X → [X/G] sending X to

the trivial G-torsor X × G → X is an étale atlas. Let X• be the corresponding

C̆ech simplicial scheme. Then Qtr(X•) ∼= M([X/G]) in DMeff(k,Q). Moreover,

Qtr(X•)(Y ) ∼= (Qtr(X)(Y ) ⊗ Q[EG])/G. Hence the complex Qtr(X•)(Y ) computes

the homology of G with coefficient in the G-module Qtr(X•)(Y ). Since G is finite
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and we work with rational coefficients, we have Qtr(X•)(Y ) ∼= (Qtr(X)(Y ))G in the

derived category of chain complexes of Q-vector spaces.

To deduce (2), we observe that the canonical quotient morphism π : X → X/G

is finite and surjective. Let m be the generic degree of π, then the morphism Γπ :

Qtr(X)→ Qtr(X/G) has a section 1
m

t
Γπ. Hence Qtr(X/G) is isomorphic to the image

of the projector 1
m

t
Γπ ◦ Γπ. But 1

m

t
Γπ ◦ Γπ = 1

|G|
∑

g∈G g whose image is isomorphic

to Qtr(X)G.

Remark II.5. In the proof above, the composition 1
m

t
Γπ ◦Γπ is well defined (cf. [47,

Definition 1A.11]). Indeed, since X/G is normal, the finite correspondence tΓπ is a

relative cycle over X/G by [47, Theorem 1A.6].

Theorem II.6. Let F be a separated smooth Deligne-Mumford stack over a field k

of characteristic 0. Let π : F → X be the coarse moduli space. Then the natural

morphism M(π) : M(F )→ Qtr(X) is an isomorphism in DMeff(k,Q).

Proof. By theorem II.16, there exists an étale covering (Ui)i∈I of X, such that

Ui ∼= Xi/Hi and Fi := Ui ×X F ∼= [Xi/Hi] for quasi-projective smooth schemes

Xi and finite groups Hi. Let F ′ :=
∐
Fi and X ′ :=

∐
Xi/Hi. Then by lemma II.3,

M(diag(Ner(F ′•)))
∼= M(F ) in DMeff(k,Q). Similarly, Qtr(X

′
•)
∼= Qtr(X). To show

that M(F ) ∼= Qtr(X), it is then enough to show that M(Ner(F ′n)) ∼= M(X ′n). Hence

we are reduced to the case F = [X/G] which follows from lemma II.4.

2.2.2 Motive of a projective bundle

Let E be a vector bundle of rank n+ 1 on a smooth finite type Deligne-Mumford

stack F and let Proj(E) denote the associated projective bundle over F .
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Theorem II.7. There exists a canonical isomorphism in DMeff(k,Q):

M(Proj(E))→
n⊕
i=0

M(F )⊗Q(i)[2i].

Proof. Let a : U → F be an atlas of F and V := Proj(a∗(E)) → Proj(E) be the

induced atlas of Proj(E).

The line bundle OProj(E)(1) induces a canonical map

τ : M(Proj(E))→ Q(1)[2]

in DMeff(k,Q) by corollary II.24 below. Here we take Q(1)[2] := C∗(P1,∞) =

N(Hom(4•,Qtr(P1,∞))) where N is the normalized chain complex and Hom is the

internal Hom (see [47, page 15-16] for Qtr(P1,∞) and C∗). As the complex C∗(P1,∞)

is fibrant for the projective motivic model structure (see [6, Corollary 2.155]), τ is

represented by a morphism

τ ′ : N(Qtr(V•))→ C∗(P1,∞)

in K(PST (k)) where V• is the C̆ech complex associated to the atlas a : V → Proj(E).

By the Dold-Kan correspondence we get a morphism

τ ′ : Qtr(V•)→ Hom(4•,Qtr(P1,∞)) (2.2.1)

in 4op(PST (k)). Note that in simplicial degree zero, the induced map Qtr(V ) →

Qtr(P1,∞) represents the class of OProj(E|V )(1). Using the commutativity of

Qtr(Vi) //

��

Hom(4i,Qtr(P1,∞))

we

��
Qtr(V ) // Qtr(P1,∞)

the upper horizontal morphism also represents the class of OProj(E|Vi )(1) modulo the

A1-weak equivalence we.
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The morphism of simplicial presheaves (2.2.1) induces a morphism

(τ ′)m : Qtr(V• × · · · × V•︸ ︷︷ ︸
m times

)→ Hom(4• × · · · × 4•︸ ︷︷ ︸
m times

,Qtr(P1,∞)∧m)

between multisimplicial presheaves with transfers for every positive integer m. The

diagonals 4• → diag(4•× · · · ×4•) and V• → diag(V•× · · · × V•) give a morphism

(τ ′)m : Qtr(V•)→ Hom(4•,Qtr(P1,∞)∧m).

Moreover the morphism Qtr(V•)→ Qtr(U•) gives a morphism

σ : Qtr(V•)→ diag(
n⊕

m=0

Hom(4•,Qtr(P1,∞)∧m ⊗Qtr(U•)))

of simplicial persheaves with transfers. Here U• is the associated C̆ech complex of

a : U → F .

In degree i the morphism σ coincides with the one from [47, Construction 15.10]

modulo the A1-weak equivalence

n⊕
m=0

Hom(4i,Qtr(P1,∞)∧m ⊗Qtr(Ui))→
n⊕

m=0

Qtr(P1,∞)∧m ⊗Qtr(Ui).

It follows from [47, Theorem 15.12] that σ induces A1-weak equivalence after passing

to the normalized complex. This proves the theorem.

2.2.3 Motives of blow-ups

Let X be a k-scheme. Let X ′ → X be a blow-up with center Z and Z ′ := Z×XX ′

be the exceptional divisor. Then [47, Theorem 13.26] can be rephrased as follows.

(Recall that char(k) = 0.)

Theorem II.8. The following commutative diagram

Ztr(Z ′) //

��

Ztr(X ′)

��
Ztr(Z) // Ztr(X)

is homotopy co-cartesian (with respect to the étale A1-local model structure).
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Proposition II.9. Let F be a smooth Deligne-Mumford stack and Z ⊂ F be a smooth

closed substack. Let BlZ(F ) be the blow-up of F with center Z and E := Z×FBlZ(F )

be the exceptional divisor. Then one has a canonical distinguished triangle of the form

:

M(E)→M(Z)⊕M(BlZ(F ))→M(F )→M(E)[1].

Proof. Let a : U → F be an atlas and let U• be the associated C̆ech complex. Then

the following square of simplicial presheaves with transfers

Qtr(U• ×F E) //

��

Qtr(U• ×F BlZ(F ))

��
Qtr(U• ×F Z) // Qtr(U•)

is homotopy co-cartesian in each degree by theorem II.8. Since homotopy colimits

commutes with homotopy push-outs, the following square

M(E) //

��

M(BlZ(F ))

��
M(Z) // M(F )

is homotopy co-cartesian and hence we get our result.

Theorem II.10. Let F be a smooth Deligne-Mumford stack and Z ⊂ F be a smooth

closed substack of pure codimension c. Let BlZ(F ) be the blow-up of F with center

Z. Then

M(BlZ(F )) ∼= M(F )
⊕

(⊕c−1
i=1M(Z)(i)[2i]).

Proof. By proposition II.9 we have a canonical distinguished triangle

M(p−1(Z))→M(Z)⊕M(BlZ(F ))→M(F )→M(p−1(Z))[1],

where p : BlZ(F ) → F is the blow-up. Since Z is smooth, p−1(Z) ∼= Proj(NZ(F )),

where NZ(F ) is the normal bundle. Hence using theorem II.7, it is enough to
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show that the morphism M(F ) → M(p−1(Z))[1] is zero in DMeff(k,Q). Let q :

BlZ×{0}(F × A1)→ F × A1 be the blow-up of Z × {0} in F × A1.

Following the proof of [62, Proposition 3.5.3], consider the morphism of exact

triangles:

M(p−1(Z)) //

��

M(q−1(Z × {0})

��
M(Z)⊕M(BlZF ) //

��

M(Z × {0})⊕M(BlZ×{0}F × A1)

f

��
M(F )

s0 //

g

��

M(F × A1)

h
��

M(p−1(Z))[1]
a // M(q−1(Z × {0}))[1]

Since the morphism s0 is an isomorphism and since by theorem II.7 a is split

injective, the morphism g is zero if h is zero. To show that h is zero it is enough to

show that f has a section. This is the case as the composition

M(F × {1})→M(BlZ×{0}F × A1)→M(F × A1)

is an isomorphism.

2.2.4 Gysin triangle

Given a morphism F → F ′ of Deligne-Mumford stacks, let

M

(
F ′

F

)
:= cone(M(F )→M(F ′)).

Similarly given a morphism V• → U• of simplicial schemes, let

Qtr

(
U•
V•

)
:= cone(Qtr(V•)→ Qtr(U•)).

Lemma II.11. Let f : F ′ → F be an étale morphism of smooth Deligne-Mumford

stacks, and let Z ⊂ F be a closed substack such that f induces an isomorphism
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f−1(Z) ∼= Z. Then the canonical morphism

M

(
F ′

F ′ − Z

)
→M

(
F

F − Z

)
is an isomorphism.

Proof. Let v′ : V ′ → F ′ be an atlas of F ′, and let v : V → F − Z be an atlas of

the complement of Z. Then U = V
∐
V ′ → F is an atlas of F . Let f• : V ′• → U•

be the induced morphism between the associated C̆ech simplicial schemes. In each

simplicial degree i, we have an étale morphism fi : V ′i → Ui such that fi induces

an isomorphism Z ×F V ′i ∼= Z ×F Ui. Let Z• := Z ×F U• ∼= Z ×F V ′• . It is enough

to show that the canonical morphism M
(

V•
V•−Z•

)
→M

(
U•

U•−Z•

)
is an isomorphism.

This is indeed the case as Qtr

(
V•

V•−Z•

)
∼= Qtr

(
U•

U•−Z•

)
by [61, Proposition 5.18].

Lemma II.12. Let p : V → F be a vector bundle of rank d over a smooth Deligne-

Mumford stack F . Let s : F → V be the zero section of p. Then

M

(
V

V \ s

)
∼= M(F )(d)[2d].

Proof. Using lemma II.11, we have an isomorphism

M

(
V

V \ s

)
∼= M

(
Proj(V ⊕O)

Proj(V ⊕O) \ s

)
.

The image of the embedding Proj(V ) → Proj(V ⊕ O) is disjoint from s and ι :

Proj(V )→ Proj(V ⊕O) \ s is the zero section of a line bundle. Thus, the induced

morphism ι : M(Proj(V ))→M(Proj(V ⊕O) \ s) is an A1-weak equivalence. (This

can be checked using an explicit A1-homotopy as in the classical case where the base

is a scheme.) It follows that

M

(
V

V \ s

)
∼= M

(
Proj(V ⊕O)

Proj(V )

)
.
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Now using theorem II.7, we get

M

(
Proj(V ⊕O)

Proj(V )

)
∼= M(F )(d)[2d].

This proves the lemma.

Theorem II.13. Let Z ⊂ F be a smooth closed codimension c substack of a smooth

Deligne-Mumford stack F . Then there exists a Gysin exact triangle:

M(F \ Z)→M(F )→M(Z)(c)[2c]→M(F \ Z)[1].

Proof. We have the following obvious exact triangle

M(F \ Z)
i−→M(F )→M

(
F

F \ Z

)
→M(F \ Z)[1].

We need to show that M
(

F
F\Z

)
∼= M(Z)(c)[2c] in DMeff(k,Q). Let DZ(F ) be

the space of deformation to the normal cone and let NZ(F ) be the normal bundle.

Consider the following commutative diagram of stacks:

Z × 1 //
� _

��

Z × A1
� _

��

Z × 0oo
� _

sZ
��

F × 1
� � //

��

DZ(F )

��

NZ(F )? _oo

��
1 // A1 0.oo

This gives morphisms

s1 : M

(
F

F \ Z

)
→M

(
DZ(F )

DZ(F ) \ (Z × A1)

)
and

s0 : M

(
NZ(F )

NZ(F ) \ sZ

)
→M

(
DZ(F )

DZ(F ) \ (Z × A1)

)
.

Let U → F be an atlas of F and let U• be the associated C̆ech simplicial scheme.

Then s1 can be described as

s1 : Qtr

(
U•

(F \ Z)×F U•

)
→ Qtr

(
DZ(F )×F U•

(DZ(F ) \ (Z × A1))×F U•

)
.
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Let Zi := Z ×F Ui. In each simplicial degree i the morphism (s1)i : Qtr

(
Ui

Ui\(Zi)

)
→

Qtr

(
DZi

(Ui)

DZi
(Ui)\(Zi×A1)

)
induced by s1 is an A1-weak equivalence by lemma II.14. Hence

s1 is an A1-weak equivalence. Similarly, s0 is an A1-weak equivalence. Hence we get

an isomorphism M
(

F
F\Z

)
∼= M

(
NZ(F )

NZ(F )\sZ

)
. But M

(
NZ(F )

NZ(F )\sZ

)
∼= M(Z)(c)[2c] by

lemma II.12.

Lemma II.14. Suppose we have a cartesian diagram of smooth schemes

Z

0
��

// Y

u

��
A1 × Z v // X

where u and v are closed embeddings and Y has codimension 1 in X. Then the

canonical morphism M
(

Y
Y \Z

)
→M

(
X

X\(A1×Z)

)
is an isomorphism.

Proof. Let c be the codimension of Z in Y ; it is also the codimension of A1×Z in X.

Using [62, Proposition 3.5.4] we have M
(

Y
Y \Z

)
∼= M(Z)(c)[2c] and M

(
X

X\(A1×Z)

)
∼=

M(Z × A1)(c)[2c]. Since M(Z) ∼= M(Z × A1), we get the lemma.

2.3 Motives of Deligne-Mumford stacks, II

The main goal of this section is to show that the motive of a smooth Deligne-

Mumford stack F is a direct factor of the motive of a smooth and quasi-projective

variety. Moreover, if F is proper, this variety can be chosen to be projective.

2.3.1 Blowing-up Deligne-Mumford stacks and principalization

Let F be a smooth Deligne-Mumford stack and let Z be a closed substack of

F . The blow-up of F along Z is a Deligne-Mumford stack BlZ(F ) together with a

representable projective morphism π : BlZ(F )→ F .
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Theorem II.15. Let F be a smooth Deligne-Mumford stack of finite type over a field

of characteristic zero. Let OF be the structure sheaf and let I ⊂ OF be a coherent

ideal. Then there is a sequence of blow-ups in smooth centers

π : Fr
πr−→ Fr−1

πr−1−−→ . . .
π1−→ F

such that π∗I ⊂ OFr is locally principal.

Proof. Let a : U → F be an atlas and denote J := a∗I. By Hironaka’s resolution of

singularities [43, Theorem 3.15], we have a sequence of blow-ups in smooth centers

π′ : Ur
π′r−→ Ur−1

π′r−1−−→ . . .
π′1−→ U,

such that (π′)∗J is a locally principal coherent ideal on Ur. Moreover this sequence

commutes with arbitary smooth base change. Hence the sequence π′ descends to

give the sequence of the statement.

Lemma II.16. Let F ′ → F be a (quasi-)projective representable morphism of Deligne-

Mumford stacks. Let X and X ′ be the coarse moduli spaces of F and F ′ respectively.

Then the induced morphism X ′ → X is (quasi-)projective. In particular, if X is

(quasi-)projective then so is X ′.

Proof. [45, lemma 2, Theorem 1].

The proof of the following theorem was communicated to us by David Rydh.

Theorem II.17. Given a smooth finite type Deligne-Mumford stack F over k, there

exists a sequence of blow-ups in smooth centers π : F ′ → F , such that the coarse

moduli space of F ′ is quasi-projective.

Proof. Let p : F → X be the morphism to the coarse moduli space of F . X is

a separated algebraic space. By Chow’s Lemma ([41, Theorem 3.1]) we have a
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projective morphism g : X ′ → X from a quasi-projective scheme X ′. Moreover by

[26, Corollary 5.7.14] we may assume that g is a blow-up along a closed subspace

Z ⊂ X. Let F ′ := X ′ ×X F . There is a morphism p′ : F ′ → X ′. Since F is

tame X ′ is the coarse moduli space of F ′ ([1, Cor 3.3]). Let T := Z ×X F and let

π : BlT (F )→ F be the blow-up of F along T . Then BlT (F ) is the closure of F \ T

in F ′. As F ′ is tame the coarse moduli space of BlT (F ) is a closed subscheme of X ′.

Hence BlT (F ) has quasi-projective coarse moduli space.

Now by II.15 We have a sequence of blow-ups in smooth centers π : Fr → F

such that the ideal sheaf defining T is principalized. Hence there exists a canonical

projective representable morphism π′ : Fr → BlT (F ). Since BlT (F ) has quasi-

projective coarse moduli space and π′ is a projective representable morphism, we

have our result by lemma II.16.

2.3.2 Chow motives and motives of proper Deligne-Mumford stack

Let f : X → Y be a finite morphism between smooth schemes such that each

connected component of X maps surjectively to a connected component of Y and

generically over Y the degree of f is constant equal to m. Then the transpose of Γf

is a correspondence from Y to X. This defines a morphism tf : Qtr(Y ) → Qtr(X)

such that f ◦ ( 1
m

t
f) is the identity.

Remark II.18. Suppose we are given a cartesian diagram of smooth schemes

Y ′
f ′ //

h′

��

X ′

h
��

Y
f // X

with h étale. Assume that f is a finite morphism such that each connected component

of Y maps surjectively to a connected component of X and generically over X the

degree of f is constant equal to m. Then f ′ satisfies the same properties as f .
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Thus we have morphisms tf : Qtr(X) → Qtr(Y ) and tf ′ : Qtr(X
′) → Qtr(Y

′).

Using the definition of composition of finite correspondences one can easily verify

that (h′) ◦ (tf ′) = (tf) ◦ (h).

Lemma II.19. Let F be a smooth Deligne-Mumford stack. Assume that there exists

a smooth scheme X and a finite surjective morphism g : X → F . Then M(F ) is a

direct factor of M(X).

Proof. We may assume that F and X are connected. Let a : U → F be an atlas and

U• the associated C̆ech complex. Set V• := U•×F X. Then g′• : V• → U• is finite and

surjective of constant degree m in each simplicial degree. It follows from II.18 that

tg′• : Qtr(U•)→ Qtr(V•) is a morphism of simplicial sheaves with transfers such that

g′• ◦ ( 1
m

t
g′•) = id. Hence Qtr(U•) is a direct factor of Qtr(V•).

Since V• is a C̆ech resolution of X, we have Qtr(V•) ∼= Qtr(X) by [47, Proposition

6.12]. This proves the result.

Theorem II.20. Let F be a proper (resp. not necessarily proper) smooth Deligne-

Mumford stack. Then M(F ) is a direct summand of the motive of a projective (resp.

quasi-projective) variety.

Proof. We can assume that F is connected. By II.17 we get a sequence of blow-ups

with smooth centers π : F ′ → F such that F ′ has (quasi)-projective coarse moduli

space. By II.10 M(F ) is a direct summand of M(F ′). By [45, Theorem 1] there

exists a smooth (quasi)-projective variety X and a finite flat morphism g : X → F ′.

Hence M(F ′) is a direct summand of M(X) which proves our claim.

Recall that the category of effective geometric motives DMeff
gm (k,Q) is the thick

subcategory of DMeff(k,Q) generated by the motives M(X) for X ∈ Sm/k (see [47,

Definition 14.1]).
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Corollary II.21. For any smooth finite type Deligne-Mumford stack F , M(F ) is an

effective geometric motive.

Remark II.22. By [47, Proposition 20.1] the category of effective Chow motives

embeds into DMeff(k,Q). Theorem II.20 shows that M(F ) lies in the essential image

of this embedding for any smooth proper Deligne-Mumford stack F .

2.4 Motivic cohomology of stacks

Lemma II.23. Let F be a Deligne-Mumford stack. We have an isomorphism

H2i−n
M (F, i) ' HomDMeff(k,Q)(M(F ),Q(n)[2i− n]).

Proof. Let U → F be an atlas and U• be the associated C̆ech complex. We have an

étale weak equivalence Q(U•) → Q of complexes of sheaves on Fét. Here Q is the

constant sheaf on Fét. Writing D(Fét) for the derived category of sheaves of Q-vector

spaces on Fét, we thus have

H2i−n
M (F, i) ∼= HomD(Fét)(Q(U•),Q(i)[2i− n]).

Let a : Q(i)→ L be a fibrant replacement for the injective local model structure on

K(PST (k)) and let b : L|Fét
→ M be a fibrant replacement for the injective local

model structure on K(Fét).

Since both a and b are étale local weak equivalences the composition b ◦ a :

Q(i)|Fét
→M is an étale weak equivalence. It follows that

HomD(Fét)(Q(U•), (Q(i)|Fét
)[2i− n]) ∼= HomHo(K(Fét))(Q(U•),M [2i− n]).

Using [63, 2.7.5], it follows that H2i−n
M (F, i) is the (2i − n)-th cohomology of the

complex Tot(Hom(Q(U•),M)).
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On the other hand, since a is an étale weak equivalence and Q(i) is A1-local, L is

also A1-local. It follows that

HomDMeff(k,Q)(Qtr(U•),Q(i)[2i− n]) ∼= HomHo(K(PST (k)))(Qtr(U•), L[2i− n]).

Again by ([63, 2.7.5]), the right hand side is same as (2i− n)-th cohomology of the

complex Tot(Hom(Qtr(U•), L)).

To prove the lemma it is now sufficient to show that L(X) → M(X) is a quasi-

isomorphism for any smooth k-scheme X. By definition

Hn(L(X)) ∼= Hn(Hom(Qtr(X), F )) ∼= Extn(Qtr(X),Q(i)[n])

and by [47, 6.25] we have

Extn(Qtr(X),Q(i)[n]) = Hn
ét(X,Q(i))

which is same as Hn(M(X)).

Corollary II.24. Let F be a Deligne-Mumford stack and let OF be the structure

sheaf. Then we have an isomorphism

Pic(F )⊗Q ∼= H1
ét(F,O×F ⊗Q) ∼= HomDMeff(k,Q)(M(F ),Q(1)[2])

Proof. The first isomorphism follows from [52, page 65, 67]. By [47, Theorem 4.1]

O∗F [1]⊗Q ∼= Q(1)[2]. So the second isomorphism is a particular case of lemma II.23.

Remark II.25. From the proofs, it is easy to see that Lemma II.23 and Corollary

II.24 are true integrally if we use Voevodsky’s category of étale motives with integral

coefficients DMeff, ét(k,Z).
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2.5 Chow motives of stacks and comparisons

Let C be a symmetric monoidal category and letX ∈ Ob(C). Recall that an object

Y ∈ C is called a strong dual of X if there exist two morphisms coev : 1 → Y ⊗X

and ev : X → 1, such that the composition of

X
id⊗coev−−−−→ X ⊗ Y ⊗X ev⊗id−−−→ X (2.5.1)

and the composition of

Y
coev⊗id−−−−→ Y ⊗X ⊗ Y id⊗ev−−−→ Y (2.5.2)

are identities.

Lemma II.26. Let F be a proper smooth Deligne-Mumford stack of pure dimension

d. Then hDM(F ) := (F,∆F , 0) has a strong dual inMDM
k . It is given by (F,∆F ,−d).

Proof. Set hDM(F )∗ := (F,∆F ,−d). We need to give morphisms coev : 1 →

hDM(F )∗⊗ hDM(F ) and ev : hDM(F )⊗ hDM(F )∗ → 1, such that (2.5.1) and (2.5.2)

are satisfied. The morphisms coev and ev are given by ∆F ∈ Ad(F×F ). To compute

the composition of (2.5.1), we observe that intersection of the cycles ∆F×∆F×F and

F×∆F ×∆F in F×F×F×F×F is equal to δ(F ) where δ : F → F×F×F×F×F

is the diagonal morphism. The push-forward to F × F of the latter is simply the

diagonal of F × F . This shows that the composition of (2.5.1) is the identity of

hDM(F ). The composition of (2.5.2) is treated using the same method.

By [58, Theorem 2.1] the natural functor e : Mk → MDM
k is an equivalence of

Q-linear tensor categories. This equivalence preserves the subcategories of effective

motives. Thus, after inverting this equivalence we can associate an effective Chow

motive h(F ) ∈Meff
k to every smooth and proper Deligne-Mumford stack F . On the
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other hand, by [47, Proposition 20.1] there exists a fully faithful functor ι :Meff
k →

DMeff(k,Q).

Theorem II.27. Let F be a smooth proper Deligne-Mumford stack. Then M(F ) ∼=

ι ◦ h(F ).

Proof. We may assume that F has pure dimension d. By II.20 M(F ) is a direct

factor of the motive of a smooth and projective variety W such that dim(W ) = d.

By [47, Example 20.11],

Hom(M(W ),Q(d)[2d]) ∼= M(W )

is an effective Chow motive. It follows that Hom(M(F ),Q(d)[2d]) is also an effective

Chow motive.

We first show that ι ◦ h(F ) ∼= Hom(M(F ),Q(d)[2d]). Let Vk be the category

of smooth and projective varieties over k. For M ∈ DMeff(k,Q) denote ωM the

presheaf on Vk defined by

X ∈ Vk 7→ HomDMeff(k,Q)(M(X),M).

Using V.1, it is enough to construct an isomorphism of presheaves

ωHom(M(F ),Q(d)[2d])
∼= ωι◦h(F ).

The right hand side is by definition the presheaf Adim(F )(− × F ). For X ∈ Vk, we

have

ωHom(M(F ),Q(d)[2d])(X) = homDMeff(k,Q)(M(X), Hom(M(F ),Q(d)[2d]))

= homDMeff(k,Q)(M(X × F ),Q(d)[2d]))

= H2d
M (X × F, d).

We conclude using [36, Theorem 3.1(i) and Theorem 5.3.10].
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To finish the proof, it remains to construct an isomorphism ι ◦ h(F ) ' Hom(ι ◦

h(F ),Q(d)[2d]). It suffices to do so in the stable triangulated category of Voevodsky’s

motives DM(k,Q) in which DMeff(k,Q) embeds fully faithfully by Voevodsky’s

cancellation theorem. (Recall that DM(k,Q) is defined as the homotopy category of

T = Qtr(A1/A1− 0)-spectra for the stable motivic model structure; for more details,

see [5, Définition 2.5.27] in the special case where the valuation on k is trivial.) In

DM(k,Q), we have an isomorphism

Hom(ι ◦ h(F ),Q(d)[2d]) ' Hom(ι ◦ h(F ),Q(0))⊗Q(d)[2d].

As the full embedding Mk → DM(k,Q) and the equivalence Mk ' MDM
k are

tensorial, they preserve strong duals. From Lemma II.26, it follows that Hom(ι ◦

h(F ),Q(0)) is canonically isomorphic to ι(F,∆F ,−d) = ι◦h(F )⊗Q(−d)[−2d]. This

gives the isomorphism Hom(ι ◦ h(F ),Q(d)[2d]) ' ι ◦ h(F ) we want.



CHAPTER III

Motivic decomposition

3.1 Introduction

Recall that a relative cellular variety is a smooth and proper variety X equipped

with a finite increasing filtration by closed (not necessarily smooth) subvarieties

φ = X−1 ⊂ X0 ⊂ . . . Xn = X

such that each successive difference Xi/i−1 := Xi \Xi−1, called cell, admits a vector

bundle pi : Xi/i−1 → Yi to a smooth proper variety Yi, called base. By a result

of Karpenko [38, Corollary 6.11], the Chow motive of a relative cellular variety de-

composes into the direct sum of the Chow motives of the bases suitably shifted and

twisted. The shifts and twists depend on the ranks of pi’s. The decomposition is

given by the following strategy. First, one considers the graph of the vector bundle

p : GrX → Y in CH(GrX × Y ). Here GrX :=
∐n

i=0Xi/i−1 and Y :=
∐n

i=0 Yi. The

closure of the graph is a cycle π in CH(X × Y ). The homotopy invariance property

and functoriality of Chow groups and K-cohomology groups ([38, lemma 6.6, 6.7])

gives the following spilt exact sequence of Chow groups

0→ CH(Xi−1)→ CH(Xi)→ CH(Yi)→ 0. (3.1.1)

Using this we get an isomorphism CH(Y ) ∼= CH(X). Then one shows that this
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isomorphism is given by tπ ∈ CH(Y ×X).

We give the definition of a Chow cellular Deligne-Mumford stack in III.11. Lemma

III.8 and corollary III.10 gives homotopy invariance property in our setting. The

analogue of 3.1.1 is deduced from the Gysin triangle and proposition III.3. The

motivic decomposition of Chow cellular Deligne-Mumford stack is given in III.13.

The existing proof of vanishing lemma of Voevodsky (cf . III.1) and the con-

struction of the fully faithful embedding ι :Meff
k → DMeff (k,Q) (cf. I.6) depends

on resolution of singularities. Hence, throughout this chapter the base field k will

be of characteristic 0, unless otherwise mentioned. For perfect base field of positive

characteristics p, we will get the same results for schemes as those mentioned in this

chapter (with Z[1/p] coefficients), if the program mentioned in [40, section 1.6] is

fully realized.

3.2 Voevodsky’s vanishing lemma

The following lemma, which is essentially due to Voevodsky, is the main ingredient

in our motivic decomposition theorem.

Lemma III.1. Let X, Y ∈ Sm/k, such that X is proper. Then

HomDMeff(k,Q)(M(Y )(c)[2c],M(X)[1]) = 0.

Proof. The proof follows from [62, Corollary. 4.2.6] if Y is proper. We follow the

same argument here. Let d = dim(X). Since X is proper, by [47, Example 20.11]

we have

Hom(M(X),Q(d)[2d]) ∼= M(X).

Hence, by [47, Proposition 14.16 and Theorem 19.3]

HomDMeff(k,Q)(M(Y )(c)[2c],M(X)[1]) = H
2(d−c)+1
M (Y ×X, d− c) = 0.
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Remark III.2. Using the same argument of the previous lemma, one can deduce

HomDMeff(k,Z)(M(Y )(c)[2c],M(X)[1]) = 0.

Proposition III.3. Let F be a smooth Deligne-Mumford stack and let Z ⊂ F be a

smooth and closed substack of codimension c. If M(F \ Z) is a Chow motive, then

there is an isomorphism in DMeff(k,Q),

M(F ) ∼= M(Z)(c)[2c]⊕M(F \ Z).

Proof. By [15, Lemma 3.9], there is an exact triangle,

M(F \ Z)→M(F )→M(Z)(c)[2c]→M(F \ Z)[1].

We have to show that this triangle splits. Since M(F \ Z) is a Chow motive and

M(Z) is a direct factor of M(Y ) for some smooth k-scheme Y (cf. II.20), we have

by Lemma III.1

HomDMeff(k,Q)(M(Z)(c)[2c],M(F \ Z)[1]) = 0.

This proves the existence of the required splitting.

Remark III.4. We can explicitly construct the isomorphism

M(F ) ∼= M(Z)(c)[2c]⊕M(F \ Z)

of Proposition III.3 using algebraic cycles. Let Xi be a smooth and proper Deligne-

Mumford stack of pure dimension di for 1 ≤ i ≤ n, and let σi ∈ Chci((F \Z)×Xi) be

a cycle of codimension ci. Since each Xi is proper, each cycle σi induces a morphism

σi : M(F \ Z)→M(Xi)(ci − di)[2(ci − di)]
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in DMeff(k,Q) by remark I.30 and lemma II.23. Furthermore, assume that the

morphism

∪iσi : M(F \ Z)→
n⊕
i=1

M(Xi)(ci − di)[2(ci − di)]

is an isomorphism in DMeff(k,Q).

If we can construct cycles σ′i ∈ Chci(F × Xi), such that σ′i ◦ ι = σi, then ι :

M(F \ Z) → M(F ) splits to give an isomorphism as in Proposition III.3. The

Zariski closures σ′i := σi of σi in F ×Xi are such cycles and we get an isomorphism

(∪iσ′i) ∪ σZ : M(F )→

(
n⊕
i=1

M(Xi)(ci − di)[2(ci − di)]

)
⊕M(Z)(c)[2c],

where σZ ∈ Chc+dim(Z)(F × Z) is the graph of the inclusion Z ⊂ F .

Remark III.5. If F is a smooth scheme and Z is a smooth closed subscheme of F ,

then the decomposition of III.3 holds in DMeff (k,Z).

3.3 Affine fibrations

Definition III.6. A representable smooth morphism p : F ′ → F between Deligne-

Mumford stacks is called a geometric affine fibration if the geometric fibers are affine

spaces.

In this section we prove that the motive of the total space of a geometric affine

fibration is isomorphic to the motive of the base space.

Lemma III.7. Let X be a smooth separated irreducible k-scheme and let p : Y → X

be a geometric affine fibration. Let n be the relative dimension of p. Then X can be

filtered by open subschemes,

∅ = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = X,
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such that for all i, Wi := Vi \ Vi−1 is smooth, and there is a pullback square of the

form,

An
Ui

//

ét
����

Ui

ét
����

p−1(Wi) // Wi

such that the vertical morphisms are étale and surjective.

Proof. Since p is a geometric affine fibration, there exists an étale morphism u1 :

U1 → X such that Y ×X U1
∼= An

U1
. If u1 is not surjective, let V1 be the image of

u1 and let Z1 = X \ V1 be its complement. The scheme Z1 is generically smooth

as char(k) = 0 . It has a dense, smooth subscheme W2 ⊂ Z1 which is the image of

an étale morphism u2 : U2 → Z1 such that Y ×X U2
∼= An

U2
. Let V2 := U1 ∪W2.

Since codimX(V2\V1) < codimX(V1\V0), this process terminates to give the required

filtration of X.

Lemma III.8. Let X be a smooth separated k-scheme and let p : Y → X be a

geometric affine fibration, Then M(Y ) ∼= M(X) in DMeff(k,Q).

Proof. We can assume that X is irreducible. Let n be the relative dimension of p.

By III.7, X can be filtered by open subschemes,

∅ = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = X,

such that for all i, Wi := Vi \ Vi−1 is smooth, and there is a pullback square of the

form,

An
Ui

//

ét
����

Ui

ét
����

p−1(Wi) // Wi

such that the vertical morphisms are étale and surjective.
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We use induction on i to show that M(Vi) ∼= M(p−1(Vi)) for all i. The case

i = 1 follows from the observation that M(V1) ∼= M((U1)•) and M(p−1(V1)) ∼=

M(p−1(V1) ×V1 (U1)•) where (U1)• is the C̆ech simplicial scheme associated to the

étale cover U1 → V1. In each simplicial degree, p−1(V1) ×V1 (U1)• is isomorphic to

An × (U1)•. Hence the canonical morphism, Qtr(p
−1(V1) ×V1 (U1)•) → Qtr((U1)•),

induces an A1-weak equivalence in each simplicial degree. This proves that M(V1) ∼=

M(p−1(V1)) in DMeff(k,Q).

For the general case, we use the Gysin triangle from [62]. The required isomor-

phism then follows from the morphism of triangles,

M(p−1(Vi−1)) //

o
��

M(p−1(Vi)) //

��

M(p−1(Wi))(ci)[2ci]

o
��

M(Vi−1) // M(Vi) // M(Wi)(ci)[2ci]

where ci := codimVi Wi.

Remark III.9. Let k be any perfect field. The morphism p : Y → X of the previous

lemma also induces an isomorphism in DMeff
ét (k,Z). If moreover the fibers of p are

affine spaces, then the isomorphism additionally holds in DMeff(k,Z).

Corollary III.10. Let p : F ′ → F be a geometric affine fibration of smooth Deligne-

Mumford stacks. Then M(F ′) ∼= M(F ) in DMeff(k,Q).

Proof. Let U → F be an atlas and let V = U ×F F ′ → F ′ be the induced atlas for

F ′. Let U• and V• be the associated C̆ech simplicial schemes. There is a natural

morphism V• → U•. In each simplicial degree i, Vi → Ui is a geometric affine

fibration. Therefore, the morphism Qtr(V•)→ Qtr(U•) induces A1-weak equivalence

in each simplicial degree. Hence M(p) : M(F ′)→M(F ) is an isomorphism.
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3.4 Motivic decompositions

Definition III.11. A Chow cellular Deligne-Mumford stack is a smooth Deligne-

Mumford stack F endowed with a finite increasing filtration by closed (not necessarily

smooth) substacks,

∅ = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = F,

such that the successive differences Fi\i−1 = Fi \Fi−1, called cells, are smooth of pure

codimension in F , and M(Fi\i−1) are Chow motives for all i.

On the other hand, F is said to be relative geometrically cellular if each cell Fi\i−1

admits a geometric affine fibration Fi\i−1 → Yi to a smooth, proper Deligne-Mumford

stack Yi, called the base of Fi\i−1, then the stack. (Compare with [38, Definition

6.1]).

Example III.12. Let X be a smooth and proper Deligne-Mumford stack over an

algebraically closed field k of characteristic zero, whose coarse moduli space is a

scheme and let the an action of the multiplicative group Gm on X is given. Then,

X admits a Bia lynicki-Birula decomposition [56, Theorem 3.5]. More precisely, if

F =
∐

i Fi is the decomposition into connected components of the fixed point locus of

the action of Gm, then X decomposes into a disjoint union of locally closed substacks

Xi which are Gm-equivariant affine fibrations over the Fi’s.

Proposition III.13. Let F be a Chow cellular Deligne-Mumford stack, retaining the

notation of the definition III.11. Then there is an isomorphism in DMeff(k,Q),

M(F ) ∼=
n⊕
i=0

M(Fi\i−1)(ci)[2ci],

where ci = codimF (Fi\i−1).
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Proof. We use descending induction on i to show that

M(F \ Fi) ∼=
n⊕

j=i+1

M(Fj\j−1)(cj)[2cj].

The result will then follow for i = −1.

For i = n− 1, there is nothing to prove. Suppose we know the result for i+ 1 ≤

n − 1. As the motive M(Fi+1\i) is Chow by assumption, Proposition III.3 gives an

isomorphism

M(F \ Fi) 'M(F \ Fi+1)⊕M(Fi+1\i)(ci)[2ci].

Hence we get our result.

Relative geometrically cellular Deligne-Mumford stacks are also Chow cellular.

Indeed, by Corollary III.10, we have M(Fi\i−1) ∼= M(Yi) for all i and the M(Yi)’s are

Chow motives by Theorem II.20. Hence, by proposition III.13, we get the following

corollary.

Corollary III.14. Let F be a relative geometrically cellular stack, retaining the

above notation. Then there is an isomorphism,

M(F ) ∼=
n⊕
i=0

M(Yi)(ci)[2ci],

where ci = codimF (Fi\i−1).

Remark III.15. By Remark III.4 and the proof of Proposition III.13 it is clear

that the isomorphism in Corollary III.14 is induced by the correspondences Γi ∈

Chci+dim(Yi)(F × Yi), where Γi ⊂ F × Yi is the closure of the graph of the morphism

Fi\i−1 → Yi inside F × Yi.

Remark III.16. Everything in this section works integrally in the classical case of

relative cellular varieties. Hence, it yields a new proof of Karpenko’s decomposition

theorem [38, Corollary 6.11].
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Example III.17. Let X be a Deligne-Mumford stack as in example III.12. The

motive of X decomposes as follows

M(X) ∼=
⊕
i

M(Fi)(ci)[2ci]

where ci = codimX(Xi).



CHAPTER IV

On a conjecture of Morel

In this chapter we study homotopy invariance property of the A1-connected com-

ponent sheaf aNis(π
A1

0 ). The main results are Theorem IV.23, Theorem IV.2 and

Corollary IV.3. The results of this chapter are essentially the results of [17].

4.1 Generalities on the Nisnevich local model structure

In this section we briefly recall the Nisnevich Brown-Gersten property and give

some consequences on the π0 functor.

Recall ([48, Definition 3.1.3]) that a cartesian square in Sm/k

W //

��

V

p

��
U

i // X,

is called an elementary distinguished square (in the Nisnevich topology), if p is an

étale morphism and i is an open embedding such that p−1(X −U)→ (X −U) is an

isomorphism (endowing these closed subsets with the reduced subscheme structure).

A space X is said to satisfy the Nisnevich Brown-Gersten property if for any

elementary distinguished square in Sm/k as above, the induced square of simplicial
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sets

X (X) //

��

X (V )

��
X (U) // X (W )

is homotopy cartesian (see [48, Definition 3.1.13]).

Any fibrant space for the Nisnevich local model structure satisfies the Nisnevich

Brown-Gersten property ([48, Remark 3.1.15]).

A space is A1-fibrant if and only if it is fibrant in the local model structure and

A1-local ([48, Proposition 2.3.19]).

There exist endofunctors Ex (resp. ExA1) of 4opPSh(Sm/k) such that for any

space X , the object Ex(X ) is fibrant (resp. ExA1X is A1-fibrant). Moreover, there

exists a natural morphism X → Ex(X ) (resp. X → ExA1(X )) which is a local weak

equivalence (resp. A1-weak equivalence) ([48, Remark 3.2.5, Lemma 3.2.6, Theorem

2.1.66]).

Remark IV.1. For the injective local model structure all spaces are cofibrant. Hence

for any space X and for any U ∈ Sm/k,

HomHs(Sm/k)(U,X ) = π0(Ex(X )(U)).

Since ExA1(X ) is A1-local,

HomH(k)(U,X ) = HomHs(Sm/k)(U,ExA1(X )).

Moreover ExA1(X ) is fibrant. Hence,

HomH(k)(U,X ) = π0(ExA1(X )(U)).

For any space X , let π0(X ) be the presheaf defined by

U ∈ Sm/k 7→ HomHs(Sm/k)(U,X ).



48

Theorem IV.2. Let X be a space. For any X ∈ Sm/k, such that dim(X) ≤ 1, the

canonical morphism

π0(X )(X)→ aNis(π0(X ))(X)

is surjective.

Before giving the proof we note the following consequence.

Corollary IV.3. For any space X , the canonical morphism

πA1

0 (X )(A1
F )→ aNis(π

A1

0 (X ))(A1
F )

is bijective for all finitely generated separable field extensions F/k.

Proof. For any X ∈ Sm/k,

πA1

0 (X )(X) = π0(ExA1X )(X).

The canonical morphism

πA1

0 (X )(A1
F )→ aNis(π

A1

0 (X ))(A1
F )

is surjective (applying theorem IV.2 for the space ExA1(X )). On the other hand,

consider the following commutative diagram

πA1

0 (X )(A1
F ) //

��

πA1

0 (X )(F )

o
��

aNis(π
A1

0 (X ))(A1
F ) // aNis(π

A1

0 (X ))(F ),

where the horizontal morphisms are induced by the zero section F
s0−→ A1

F . The top

horizontal morphism and the right vertical morphism are bijective. Hence the left

vertical surjective morphism is injective.
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The proof of theorem IV.2 depends on the relation between homotopy pullback

of spaces and pullback of the presheaves of connected components of those spaces.

Let I be a small category. There is a functor (I/−) : I → Cat such that for any

i ∈ I, (I/−)(i) = I/i. Here Cat is the category of small categories and I/i is the

over category. There is a functor N : Cat → 4opSets, such that for any J ∈ Cat,

the simplicial set N(J) is the nerve of the category J . Define N(I/−) := N ◦ (I/−).

A set S will be considered as a simplicial set in the obvious way : in every simplicial

degree it is given by S and faces and degeneracies are identities. These simplicial

sets are called discrete simplicial sets.

Lemma IV.4. Let X : I → 4opSets be a diagram of discrete simplicial sets. Then

limIX ∼= holimIX.

Proof. By adjointness ([14, Ch. XI 3.3])

Hom(4n ×N(I/−), X) = Hom(4n, holimIX).

The fucntor π0 : (4opSets)I → (Sets)I is left adjoint to the fucntor

N : (Sets)I → (4opSets)I , where N maps a diagram of sets to the same dia-

gram of discrete simplicial sets. Hence Hom(4n × N(I/−), X) = Hom(•I , X),

where •I is the diagram of sets given by the one element set for each i ∈ I. But

Hom(•I , X) = Hom(•, limIX), by adjointness. Therefore, we get our result.

Remark IV.5. Let X : I → 4opSets be a diagram such that each X(i) is fi-

brant for all i ∈ I. The canonical morphism X(i) → π0(X(i)) induces a morphism

holimI(X)→ limIπ0(X). This gives the following morphism

π0(holimI(X))→ limIπ0(X). (4.1.1)
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Lemma IV.6. Suppose that I is the pullback category 1 → 0 ← 2 and let

D : I → 4opSets be a digram X
p−→ Y

q←− Z such that X, Y, Z are fibrant. Then the

map (4.1.1) is surjective.

Proof. By [14, Ch. XI 4.1.(iv), 5.6] holimI(X) ∼= X ′ ×Y Z, where X → X ′
p′−→ Y

is a factorisation of p into a trivial cofibration followed by a fibration p′. Since

π0(X) ∼= π0(X ′), it is enough to show that

π0(X ′ ×Y Z)→ π0(X ′)×π0(Y ) π0(Z)

is surjective. So we can assume that p is a fibration. Let s ∈ π0(X)×π0(Y ) π0(Z). s

can be represented (not uniquely) by (x, y, z), where (x, z) ∈ X0×Z0 and y ∈ Y1 such

that d0(y) = p(x) and d1(y) = q(z). Since p is a fibration, we can lift the path y to a

path y′ ∈ X1 such that d0(y′) = x and x′ := d1(y′) maps to q(z). holimID ∼= X×Y Z.

Therefore (x′, z) ∈ holimID which maps to s. This proves the surjectivity.

Remark IV.7. Under the condition of lemma IV.6, the map (4.1.1) may not be

injective. Indeed, if Y is connected, X is the universal cover of Y and Z = •, then

(4.1.1) is injective if and only if Y is simply connected.

A noetherian k-scheme X, which is the inverse limit of a left filtering system (Xα)α

with each transition morphism Xβ → Xα being an étale affine morphism between

smooth k-schemes, is called an essentially smooth k-scheme. For any X ∈ Sm/k

and any x ∈ X, the local schemes Spec(OX,x) and Spec(Oh
X,x) are essentially smooth

k-schemes.

Lemma IV.8. Let X be a space. For any essentially smooth discrete valuation ring

R, the canonical morphism

π0(X )(R)→ aNis(π0(X ))(R)
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is surjective.

Proof. By remark IV.1 we can assume that X is fibrant.

Let F = Frac(R) and let Rh be the henselisation of R at its maximal ideal. Sup-

pose s ∈ aNis(π0(X ))(R). Then for the image of s in aNis(π0(X ))(Rh), there exists a

Nisnevich neighbourhood of the closed point p : W → Spec(R) and

s′ ∈ π0(X )(W ), such that s′ gets mapped to s|W ∈ aNis(π0(X ))(W ). Let

L = Frac(W ). For any finitely generated separable field extension F/k, the map

π0(X )(F )→ aNis(π0(X ))(F ) is bijective. Hence, s′|L is same as s|L. We get two sec-

tions s′ ∈ π0(X )(W ) and s|F ∈ π0(X )(F ), such that s′|L = s|L. By lemma IV.6 and

the fact that X satisfies the Nisnevich Brown-Gersten property, we find an element

sv ∈ π0(X )(R) which gets mapped to s. Therefore, π0(X )(R) → aNis(π0(X ))(R) is

surjective.

Proof of theorem IV.2. Let X ∈ Sm/k and dim(X) = 1. Let α be an element of

aNis(π0(X ))(X). This α gives αp ∈ aNis(π0(X ))(OX,p) for every codimension 1 point

p ∈ X, such that αp|K(X) = αq|K(X), for all p, q ∈ X(1). By the surjectivity of

π0(X )(OX,p)→ aNis(π0(X ))(OX,p)

and bijectivity of

π0(X )(K(X))→ aNis(π0(X ))(K(X)),

we get elements α′p ∈ π0(X )(OX,p) mapping to αp, such that α′p|K(X) = α′q|K(X) for

p, q ∈ X(1).

Fix a p ∈ X(1). There exists an open set U and β ∈ π0(X )(U), such that

β|OX,p
= α′p. Let β′ ∈ aNis(π0(X )(U)) be the image of β. Suppose that β′ 6= α|U ,

but β′|OX,p
= αp. Hence there exsists U ′ ⊂ U , such that β′|U ′ = α|U ′ .
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So we can assume by Noetherian property of X that there exists a maximal open

set U ⊂ X and α′ ∈ π0(X )(U), such that α′ gets mapped to α|U . If U 6= X, then

there exists a codimension one point q ∈ X \ U . We can get an open neighborhood

Uq and an element α′′ ∈ π0(X )(Uq), such that α′′ gets mapped to α|Uq . But by

construction of these α′′, α′ we know that α′′|K(X) = α′|K(X). Hence there exists

an open set U ′ ⊂ Uq ∩ U , such that α′′|U ′ = α′|U ′ . Let Z = Uq ∩ U \ U ′. Since

dim(X) = 1, the set Z is finite collection of closed points. Therefore, Z is closed

in U . Let U ′′ = U \ Z be the open subset of U . Note that U ′′ ∩ Uq = U ′. Denote

U ′′ ∪ Uq = U ∪ Uq by V .

Let α′|U ′′ ∈ π0(X )(U ′′) be the restriction of α′ to U ′′. Hence, α′|U ′′ gets mapped

to α|U ′′ and α′|U ′′ restricted to U ′ is same as α′′ restricted to U ′. As X is Nisnevich

fibrant, it satisfies the Zariski Brown-Gersten property. By lemma IV.6, we get a

section sV ∈ π0(X )(V ) which gets mapped to s|V . This gives a contradiction to the

maximality of U . This finishes the proof of the theorem.

4.2 H-groups and homogeneous spaces

In this section we prove A1-invariance of aNis(π
A1

0 ) for H-groups and

homogeneous spaces for H-groups.

Definition IV.9. Let X be a pointed space, i.e., X is a space endowed with a mor-

phism x : Spec(k)→ X . It is called an H-space if there exists a base point preserving

morphism µ : (X × X )→ X , such that µ ◦ (x× idX ) and µ ◦ (idX × x) are equal to

idX in H(k). Here X × X is pointed by (x, x). It is called an H-group if :

1. µ◦ (µ× idX ) is equal to µ◦ (idX ×µ) in H(k) modulo the canonical isomorphism

α : X × (X × X )→ (X × X )×X .

2. There exists a morphism (.)∗ : X → X , such that µ◦(idX , (.)∗) and µ◦((.)∗, idX )
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are equal to the constant map c : X → X in H(k). Here the image of the

constant map c is x.

Remark IV.10. Recall from [48, 3.2.1] that

ExA1 = ExG ◦ (ExG ◦ SingA1

∗ )N ◦ ExG.

The fucntors ExG and SingA
1

∗ commutes with finite limits by [48, 2.3.2, Theorem

2.1.66]. Also filtered colimit commutes with finite products. Therefore, ExA1 com-

mutes with finite products. If X is an H-group as described in IV.9, then the mor-

phisms ExA1(x), ExA1(µ) and ExA1((.)∗) satisfy the conditions of the definition IV.9.

Hence, ExA1(X ) is also an H-group.

Suppose that a, b, c ∈ π0(ExA1(X ))(U) for some U ∈ Sm/k. Let f, g : Y → Z

be morphisms between A1-fibrant spaces such that f is equal to g in H(k), then f

and g are simplicially homotopic. Using this, we get µ(a, µ(b, c)) = µ(µ(a, b), c),

µ(a, x) = a = µ(x, a) and µ(a, a∗) = µ(a∗, a) = x. Hence, π0(ExA1(X )) is a presheaf

of groups.

Let X be an H-group. Let Y be a space.

Definition IV.11. The space Y is called an X -space if there exists a morphism

a : X × Y → Y, such that the following diagram

X × (X × Y)
idX×a//

aX×idY
��

X × Y
a

��
X × Y a // Y

commutes in H(k).

Definition IV.12. Let X be an H-group and let Y be an X -space. Y is called

a homogeneous X -space if for any essentially smooth henselian R, the presheaf of

groups πA1

0 (X )(R) acts transitively on πA1

0 (Y)(R).
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Remark IV.13. Y is a homogeneous X -space if and only if the colimit of the diagram

πA1

0 (Y)
pr←− πA1

0 (X )× πA1

0 (Y)
a−→ πA1

0 (Y) is Nisnevich locally trivial.

Lemma IV.14. If

B //

��

C

��
A // D

is a homotopy cocartesian square of spaces then, after applying aNis(π0), one gets a

cocartesian square of sheaves.

Proof. Let S ∈ PSh(Sm/k) and let ι(S) be the simplicial presheaf such that in every

simplicial degree k, ι(S)k = S. The face and degeneracy morphisms are identity

morphisms. This gives a functor ι : PSh(Sm/k) → 4opPSh(T ) which is right

adjoint to π0. Hence aNis(π0) also has a right adjoint ι : Sh(Sm/k)→4opSh(Sm/k).

This implies, aNis(π0) commutes with colimits. Let B
f−→ A′

g−→ A be a factorisation

of B → A, such that f is a cofibration and g is a trivial fibration. Homotopy colimit

of the digram A ←− B → C is weakly equivalent to the colimit of A′ ←− B → C.

As aNis(π0) commutes with colimits and aNis(π0(A)) ∼= aNis(π0(A′)), we get our

result.

Corollary IV.15. Let Y be an X -space. Y is a homogeneous X -space if and only if

the homotopy pushout of ExA1(Y)
pr←− ExA1(X )×ExA1(Y)

a−→ ExA1(Y) is connected.

Proof. The proof follows from lemma IV.14 and remark IV.13.

Lemma IV.16. Let Y be an X -space. Y is a homogeneous X -space if the homotopy

pushout of Y pr←− X × Y a−→ Y is connected.

Proof. By [48, corolarry 2.3.22], the canonical morphism

aNis(π0(X )) → aNis(π
A1

0 (X )) (resp. aNis(π0(Y)) → aNis(π
A1

0 (Y)) is surjective as
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morphism of Nisnevich sheaves. Hence, Nisnevich locally the action of aNis(π
A1

0 (X ))

on aNis(π
A1

0 (Y)) is transitive.

Lemma IV.17. Let G,G′ be groups acting on pointed sets S, S ′ by action maps a, a′

respectively. Suppose that f : G → G′ is a group homorphism and let s : S → S ′ be

a morphism of pointed sets with trivial kernel such that s ◦ a = a′ ◦ (f × s). If G acts

transitively on S, then s is injective.

Proof. Let bS (resp. bS′) be the base point of S (resp. S ′) and let a, b ∈ S. Since G

acts transitively on S, there exist g, g′ ∈ G such that a(g, bS) = a and a(g′, bS) = b.

If s(a) = s(b), then a′(f(g), bS′) = a′(f(g′), bS′). Hence a′(f(g−1.g′), bS′) = bS′ .

So s(a(g−1.g′, bS)) = bS′ . But s is a morphism of pointed sets with trivial kernel,

therefore a(g−1.g′, bS) = bS. This implies a = a(g, bS) = a(g′, bS) = b.

Let ˜Sm/k be the category whose objects are same as objects of Sm/k, but the

morphisms are smooth morphisms. The following argument is taken from [49, Corol-

lary 5.9]

Lemma IV.18. Let S be a Nisnevich sheaf on Sm/k. Suppose that for all essen-

tially smooth henselian X, the map S(X) → S(K(X)) is injective. Then S(Y ) →

S(K(Y )) is injective, for all connected Y ∈ Sm/k.

Proof. Let S ′ be the presheaf on ˜Sm/k, given by

X ∈ ˜Sm/k 7→
∏
i

S(K(Xi)),

where Xi’s are the connected components of X. Then S ′ is a Nisnevich sheaf on

˜Sm/k (as every Nisnevich covering of some X ∈ ˜Sm/k splits over some open dense

U ⊂ X). The canonical morphism S → S ′ is injective on Nisnevich stalks. Hence

S → S ′ is sectionwise injective.
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Corollary IV.19. Let S be a Nisnevich sheaf on Sm/k. Suppose that for all

essentially smooth henselian X, the map S(X) → S(K(X)) is injective. Then

S(Y )→ S(U) is injective for any Y ∈ Sm/k and any open dense U ⊂ Y .

Proof. We can assume that Y is connected. By lemma IV.18, the morphism S(Y )→

S(K(Y )) is injective and S(U) → S(K(Y )) is injective, hence S(Y ) → S(U) is

injective.

Lemma IV.20. Let S be a Zariski sheaf on Sm/k, such that S(X) → S(U) is

injective for any X ∈ Sm/k and for any open dense U ⊂ X. Then S is A1-invariant

if and only if S(F ) → S(A1
F ) is bijective for every finitely generated separable field

extension F/k.

Proof. The only if part is clear. We need to show that for any connected X ∈ Sm/k,

the morphism S(A1
X) → S(X) (induced by the zero section), is bijective. Let F :=

K(X). In the following commutative diagram

S(A1
X) //

��

S(X)

��
S(A1

F ) // S(F )

the left vertical, the right vertical and the bottom horizontal morphisms are injective,

thus the top horizontal surjective morphism is injective.

We recall the following from [30] and [49, Corollary 5.7]

Theorem IV.21. Let X be a smooth (or essentially smooth) k-scheme, s ∈ X be a

point and Z ⊂ X be a closed subscheme of codimension d > 0. Then there exists an

open subscheme Ω ⊂ X containing s and a closed subscheme Z ′ ⊂ Ω, of codimension

d − 1, containing ZΩ := Z ∩ Ω and such that for any n ∈ N and for any A1-fibrant
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space X , the map

πn(X (Ω/(Ω− ZΩ)))→ πn(X (Ω/(Ω− Z ′)))

is the trivial map. In particular, if Z has codimension 1 and X is irreducible, Z ′

must be Ω. Thus for any n ∈ N the map

πn(X (Ω/(Ω− ZΩ)))→ πn(X (Ω))

is the trivial map.

Remark IV.22 ([49]). Let X be an essentially smooth local ring and let x be the

closed point. Let U ⊂ X be an open set. We have the following exact sequence of

sets and groups for any A1-fibrant space X :

· · · → π1(X )(X)→ π1(X )(U)→ π0(X )(X/U)→ π0(X )(X)→ π0(X )(U)

Applying theorem IV.21 to X and its closed point x, we see that Ω = X and the

morphisms

πn(X )(X/U)→ πn(X )(X)

are trivial. Hence the morphism of pointed sets

π0(X )(X)→ π0(X )(U)

has trivial kernel. Taking colimit over open sets, this gives the morphism of pointed

sets

π0(X )(X)→ π0(X )(K(X))

which has trivial kernel. In particular if X is henselian, then the morphism of pointed

sets

aNis(π0(X ))(X)→ aNis(π0(X ))(K(X))

has trivial kernel.
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Theorem IV.23. Let X be an H-group and Y be a homogeneous X -space. Then

aNis(π
A1

0 (X )) and aNis(π
A1

0 (Y)) are A1-invariant.

Proof. For any connected X ∈ Sm/k and any x ∈ X, the morphisms of pointed sets

aNis(π
A1

0 (X ))(Oh
X,x)→ aNis(π

A1

0 (X ))(K(Oh
X,x))

aNis(π
A1

0 (Y))(Oh
X,x)→ aNis(π

A1

0 (Y))(K(Oh
X,x))

have trivial kernel by remark IV.22. By lemma IV.17 and the fact that aNis(π
A1

0 (X ))(Oh
X,x)

is a group, the morphisms mentioned above are injective morphisms of sets. By

lemma IV.18, for every X ∈ Sm/k, the morphisms

aNis(π
A1

0 (X ))(X)→ aNis(π
A1

0 (X ))(K(X))

and

aNis(π
A1

0 (Y))(X)→ aNis(π
A1

0 (Y))(K(X))

are injective. Hence for any X ∈ Sm/k and any open dense subscheme U ⊂ X, the

morphisms

aNis(π
A1

0 (X ))(X)→ aNis(π
A1

0 (X ))(U)

and

aNis(π
A1

0 (Y))(X)→ aNis(π
A1

0 (Y))(U)

are injective by corollary IV.19,. Now applying corollary IV.3 and lemma IV.20, we

get our result.

Remark IV.24. If X is an H-group, then

πA1

0 (X )(R)→ aNis(π
A1

0 (X ))(R)
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is bijective for any essentially smooth discrete valuation ring R. Indeed, using remark

IV.22 one can easily show that for any essentially smooth discrete valuation ring R,

the group homomorphism

πA1

0 (X )(R)→ πA1

0 (X ))(K(R))

is injective. On the other hand, consider the following commutative diagram

πA1

0 (X )(R) //

��

πA1

0 (X ))(K(R))

o
��

aNis(π
A1

0 (X ))(R) // aNis(π
A1

0 (X ))(K(R))

where the bottom horizontal morphism is injective by theorem IV.23. The right ver-

tical injective morphism is surjective by lemma IV.8. Hence it is bijective.

4.3 Application and comments

By gathering known facts from [64], [50, Theorem 2.4] and [23, Corollary 5.10]

one can show that for any connected linear algebraic group G, such that the almost

simple factors of the universal covering (in algebraic group theory sense) of the

semisimple part of G is isotropic and retract k-rational ([23, Definition 2.2]), the

sheaf aNis(π
A1

0 (G)) is A1-invariant. By IV.23, we have the following generalisation.

Corollary IV.25. Let G be any sheaf of groups on Sm/k and B be any subsheaf

of groups. Then aNis(π
A1

0 (G)) is A1-invariant and aNis(π
A1

0 (G/B)) is A1-invariant.

Here G/B is the quotient sheaf in Nisnevich topology.

We recall from [49, Definition 7] the following definition.

Definition IV.26. A sheaf of groups G on Sm/k is called strongly A1-invariant if

for any X ∈ Sm/k, the map

H i
Nis(X,G)→ H i

Nis(A1
X , G)
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induced by the projection A1
X → X, is bijective for i ∈ {0, 1}.

Let X be a pointed space. By [49, Theorem 9], for any pointed simplicial persheaf

X , the sheaf of groups aNis(π0(Ω(ExA1(X )))) = πA1

1 (X , x) is strongly A1-invariant.

Here x is the base point of X and Ω(ExA1(X )) is the loop space of ExA1(X ). So

for any space X , which is the loop space of some A1-local space Y , [49, Thoerem 9]

gives the A1-invariance property for aNis(π
A1

0 (X )). We end this section by showing

that there exists an A1-local H-group which is not a loop space of some A1-local

space. This will imply that the statement of the theorem IV.23 for H-groups is not

a direct consequence of [49, Theorem 9]. It is enough to show that there exists sheaf

of groups G which is A1-invariant, but not strongly A1-invariant.

Let Z[Gm] be the free presheaf of abelian groups generated by Gm.

Remark IV.27. For any X ∈ Sm/k and a dominant morphism U → X, the

canonical morphism Z[Gm](X) → Z[Gm](U) is injective. Indeed, any nonzero a ∈

Z[Gm](X) can be written as a =
∑n

i=1 ai.gi, where gi ∈ Gm(X) and ai ∈ Z \ {0}

such that gi 6= gi′ for i 6= i′. Suppose a|U = 0, i.e.,
∑n

i=1 ai.gi|U = 0. Since

Gm(X) → Gm(U) is injective, gi|U 6= gi′ |U for i 6= i′. This implies ai = 0 for all i.

Hence a = 0.

The presheaf Z[Gm] is not a Nisnevich sheaf. But it is not far from being a

Nisnevich sheaf.

Lemma IV.28. The Nisnevich sheafification aNis(Z[Gm]) is the presheaf that asso-

ciates to every smooth k-scheme X =
∐

iXi, the abelian group
∏

i Z[Gm](Xi), where

Xi’s are the connected components of X.

Proof. Let F be the presheaf that associates to every smooth k-scheme X =
∐

iXi,

the abelian group
∏

i Z[Gm](Xi), where Xi’s are the connected components of X.
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It is enough to prove that F is a Nisnevich sheaf. We need to show that for any

elementary distinguished square in Sm/k

W //

��

V

p

��
U

i // X,

the induced commutative square

F(X) //

��

F(V )

��
F(U) // F(W )

is cartesian. By the construction of F we can assume that X,W, V, U are connected.

So, it is enough to prove that

Z[Gm](X) //

��

Z[Gm](V )

��
Z[Gm](U) // Z[Gm](W )

is cartesian. Let a ∈ Z[Gm](U) and let b ∈ Z[Gm](V ) such that a|W = b|W . We

can write a =
∑n

i=1 ai.fi and b =
∑m

j=1 bj.gj, where ai, bj ∈ Z \ {0} and (fi, gj) ∈

Gm(U) × Gm(V ) such that fi 6= fi′ and gj 6= gj′ for all i 6= i′ and j 6= j′. Since all

the morphisms are dominant, gj|W 6= gj′ |W and fi|W 6= fi′ |W for all i 6= i′ and j 6= j′.

Hence, for every i there exists atmost one j such that fi|W = gj|W . Suppose for some

fi′ , fi′ |W 6= gj|W for all j. Then we can write

(
n∑
i=1

ai.fi|W )− (
m∑
j=1

bj.gj|W ) = ai′fi′ +
l∑

k=1

ck.hk = 0,

where hk 6= hk′ for all k 6= k′ and fi′ 6= hk for all k. This implies ai′ = 0, which gives

a contradiction. Hence, for every i there exists exactly one j such that fi|W = gj|W .

Therefore, m = n. Also we can write a =
∑n

i=1 a
′
i.f
′
i , such that a′i = bi and f ′i |W =
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gi|W . Since Gm is a Nisnevich sheaf, we get g′i ∈ Gm(X) which restricts to f ′i and

gi. This gives a section c =
∑n

i=1 bi.g
′
i ∈ Z[Gm](X) which restricts to a and b. The

uniqueness of c follows from the remark IV.27.

As Gm is pointed by 1, aNis(Z[Gm]) ∼= Z⊕Z(Gm). Here Z is the sheaf generated by

the point 1. Let A be a sheaf of abelian groups on Sm/k. To give a morphism Gm →

A, such that 1 gets mapped to 0 ∈ A, is equivalent to give a morphism Z(Gm)→ A of

abelian sheaves. Since Gm is A1-invariant, aNis(Z[Gm]) is A1-invariant. This implies

Z(Gm) is A1-invariant.

Remark IV.29. Let σ1 : Gm → KMW
1 be the canonical pointed morphism (see [49,

page 86]). For any finitely generated separable field extension F/k, the morphism

maps u ∈ F ∗ to the corresponding symbol [u] ∈ KMW
1 (F ). The induced morphism

Z(Gm)→ KMW
1 is not injective. Indeed, we can choose u ∈ F ∗ \1 such that u(u−1)

is not 1. The element [u(u− 1)]− [u]− [u− 1] is zero in KMW
1 (F ), but it is non zero

in Z(Gm)(F ).

Lemma IV.30. The A1-invariant sheaf of abelian groups Z(Gm) is not strongly

A1-invariant.

Proof. Suppose Z(Gm) is strongly A1-invaraint. Then by [49, Theorem 2.37], the

morphism id : Z(Gm) → Z(Gm) can be written as φ ◦ σ1 for some unique φ. This

implies σ1 is injective which contradicts remark IV.29.
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5.1 Appendix A

As usual, we fix a base field k of characteristic 0. (Varieties will be always defined

over k.) Recall that Meff
k is the category of effective Chow motives with rational

coefficients. We will have to consider the following categories of varieties.

1. Vk: the category of smooth and projective varieties.

2. V ′k: the category of projective varieties having at most global quotient singular-

ities, i.e., those that can be written as a quotient of an object of Vk by a finite

group.

3. Nk: the category of projective normal varieties.

4. Pk: the category of all projective varieties.

We have the chain of inclusions

Vk ⊂ V ′k ⊂ Nk ⊂ Pk.

Given N ∈Meff
k we define a functor ωN : Vopk → V ecQ by

ωN(X) = HomMeff
k

(M(X), N), for X ∈ Vk.

We thus have a functor ω :Meff
k → PSh(Vk) given by N 7→ ωN .
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Theorem V.1. The functor ω : Meff
k → PSh(Vk) is fully faithful, i.e., for every

M,N ∈Meff
k , the natural morphism

HomMeff
k

(M,N)→ Hom(ωM , ωN) (5.1.1)

is bijective.

Remark V.2. The statement of the theorem appears without proof in [55, 2.2] and

is also mentioned in [58, p. 12].

Lemma V.3. The functor ω is faithful.

Proof. To show that the map (5.1.1) is injective, we may assume that M = M(X)

and N = M(Y ) for X, Y ∈ Vk. In this case, (5.1.1) has a retraction given by

α ∈ Hom(ωM , ωN) 7→ α(idX). Hence it is injective.

Definition V.4.

1. The pcdh topology on Pk is the Grothendieck topology generated by the covering

families of the form (X ′
pX′−−→ X,Z

pZ−→ X) such that pX′ is a proper morphism,

pZ is a closed embedding and p−1
X′ (X−pZ(Z))→ X−pZ(Z) is an isomorphism.

To avoid problems, we also add the empty family to the covers of the empty

scheme.

2. The fh topology on Nk is the topology associated to the pretopology formed by

the finite families (fi : Yi → X)i∈I such that ∪ifi :
∐

i∈I Yi → X is finite and

surjective.

Lemma V.5. Let M ∈Meff
k . The presheaf ωM can be extended to a presheaf ω′M on

V ′k such that for X = X ′/G with X ′ ∈ Vk and G a finite group, we have ω′M(X) =

ωM(X ′)G.
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Proof. By [21, Example 8.3.12], we can define refined intersection class with rational

coefficients which can be used to define a category of effective Chow motives M′eff
k .

Moreover, the canonical functor φ :Meff
k →M

′eff
k , induced by the inclusion Vk → V ′k,

is an equivalence of categories (cf. [9, Proposition 1.2]). For X ∈ V ′k, we set

ω′M(X) = HomM′eff
k

(M(X), φ(M)).

In this way we get a presheaf ω′M on V ′k which extends the presheaf ωM . Moreover,

the identification ω′M(X ′/G) = ωM(X ′)G is clear.

Lemma V.6. Let M ∈Meff
k . The presheaf ωM can be uniquely extended to a pcdh-

sheaf ω′′M on Pk.

Proof. From V.10(1) and the blow-up formula for Chow groups we deduce that ωM

is a pcdh-sheaf on Vk. The result now follows from the first claim in V.10.

Lemma V.7. Let M ∈Meff
k . We have ω′′M |V ′k ∼= ω′M .

Proof. We will show that ω′M extends uniquely to a pcdh-sheaf on Pk. Since ω′M |Vk ∼=

ωM , V.6 shows that this extension is given ω′′M . In particular, we have ω′′M |V ′k ∼= ω′M .

From the first statement in V.10, it suffices to show that ω′M is a pcdh-sheaf on

V ′k. To do so, we use V.10(2). Let X ∈ Vk and G a finite group acting on X. Let

Z ⊂ X be a smooth closed subscheme globally invariant under G. Let X̃ be the

blow-up of X along Z and let E be the exceptional divisor. We need to show that

ω′M(X/G) ' ker{ω′M(X̃/G)⊕ ω′M(Z/G)→ ω′M(E/G)}.

This is equivalent to

ωM(X)G ' ker{ωM(X̃)G ⊕ ωM(Z)G → ωM(E)G}.

This is true by the blow-up formula for Chow groups and the exactness of the functor

(−)G on Q[G]-modules.
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Lemma V.8. Let M ∈Meff
k . Then ω′′M |Nk

is an fh-sheaf.

Proof. Let X = Y/G with Y ∈ Nk and G a finite group. We claim that ω′′M(Y )G ∼=

ω′′M(X). When Y is smooth, this is true by V.5 and V.7. In general, we will prove

this by induction on the dimension of Y and we will no longer assume that Y is

normal. (However, it is convenient to assume that Y is reduced.) If Y has dimension

zero then Y is smooth and the result is known. Assume that dim(Y ) = d > 0. By

G-equivariant resolution of singularities there is a blow-up square

E
g //

h
��

Y ′

f

��
Z

i // Y

such that Y ′ is smooth, Z ⊂ Y is a nowhere dense closed subscheme which is invariant

under the action of G and such that Y ′ − E ' Y − Z. Taking quotients by G gives

the following blow-up square

E/G //

��

Y ′/G

��
Z/G // Y/G.

Using induction on dimension and the fact that ω′′M is a pcdh-sheaf, we are left to

show that ω′′M(Y ′)G ' ω′′M(Y ′/G). This follows from V.5 and V.7.

Proof of Theorem V.1. It remains to show that the functor is full. Let M, N ∈Meff
k .

Since every effective motive is a direct summand of the motive of a smooth and

projective variety, we may assume that M = M(X) and N = M(Y ) for X, Y ∈ Vk.

Let f : ωM(X) → ωM(Y ) be a morphism of presheaves. As in the proof of V.3, there is

an associated morphism of Chow motives fX(idM(X)) : M(X)→M(Y ). For Z ∈ Vk

and c ∈ ωM(X)(Z), we need to show that fX(idM(X)) ◦ c = fZ(c) ∈ ωM(Y )(Z).
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By V.7 the morphism f can be uniquely extended to a morphism f ′′ : ω′′M(X) →

ω′′M(Y ) of pcdh-sheaves on Pk. Moreover, by V.8, the restriction of f ′′ to Nk is a

morphism of fh-sheaves. By [5, Prop 2.2.6] (see also [57]), any fh-sheaf has canonical

transfers and f ′′|Nk
commutes with them. Now c ∈ ωM(X)(Z) = CH∗(Z ×X) is the

class of a finite correspondence γ ∈ Cor(Z,X) and c = ω′M(X)(γ)(idM(X)). (This

follows from [47, Corollary 19.2] and the property that C∗Qtr(X) is fibrant with

respect to the projective motivic model structure; this property holds because X is

proper, see [6, Cor. 1.1.8].) Thus, we have:

fZ(c) = f ′Z(ω′M(X)(γ)(idM(X))) = ω′M(Y )(γ)(f ′X(idM(X))) = fX(idM(X)) ◦ c.

This completes the proof.

5.2 Appendix B

Let C ′ be a category and τ ′ a Grothendieck topology on C ′. Given a functor

u : C → C ′ there is an induced topology τ on C. (For the definition of the induced

topology, we refer the reader to [3, III 3.1].)

Proposition V.9. Assume that u : C ↪→ C ′ is fully faithful and that every object of

C ′ can be covered, with respect to the topology τ ′, by objects in u(C). Let X ∈ C and

R ⊂ X be a sub-presheaf of X. Then, the following conditions are equivalent:

1. R ⊂ X is a covering sieve for τ .

2. There exists a family (Xi → X)i∈I such that

(a) R ⊃ Image(
∐

iXi → X);

(b) (u(Xi)→ u(X))i∈I is a covering family for τ ′.

Moreover u∗ : Shv(C ′)→ Shv(C) is an equivalence of categories.
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Proof. The last assertion is just [3, Théorème III.4.1].

(1) ⇒ (2): Suppose R ⊂ X is a covering sieve for τ . Then u∗(R) → u(X) is a

bicovering morphism for τ ′, i.e., induces an isomorphism on the associated sheaves

(see [3, Définition I.5.1, Définition II.5.2 and Proposition III. 1.2] where u∗ was

denoted by u! which is not so standard nowadays). Since C contains a generating

set of objects for τ ′, there is a covering family of the form (u(Xi)→ u(X))i∈I for the

topology τ ′ and a dotted arrow as below

u∗(R)

��∐
i u(Xi) //

99

u(X)

making the triangle commutative.

Now, recall that for U ′ ∈ C ′, one has

u∗(R)(U ′) = colim
(V, U ′→u(V ))∈U ′\C

R(V )

where U ′\C is the comma category. Using the fact that u : C ↪→ C ′ is fully faithful,

we see that for U ′ = u(U) the category u(U)\C has an initial object given by

(U, id : u(U) = u(U)). It follows that R(U) ' u∗(R)(u(U)) which can be also

written as R ' u∗u
∗(R). In particular, the maps of presheaves u(Xi) → u∗(R) are

uniquely induced by maps of presheaves Xi → R. This shows that R contains the

image of the morphism of presheaves
∐

iXi → X.

(2) ⇒ (1): Now suppose that condition (2) is satisfied. We must show that

u∗(R)→ u(X) is a bicovering morphism of presheaves for τ ′, i.e., that aτ ′(u
∗(R))→

aτ ′(u(X)) is an isomorphism where aτ ′ is the “associated τ ′-sheaf” functor.

Since the surjective morphism of sheaves aτ ′(
∐

i u(Xi))→ aτ ′(u(X)) factors through

aτ ′(u
∗(R)), the surjectivity of aτ ′(u

∗(R)) → aτ ′(u(X)) is clear. Since every object

of C ′ can be covered by objects in u(C), to prove injectivity it suffices to show that
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u∗(R)(u(U))→ u(X)(u(U)) is injective for all u ∈ C. From the proof of the implica-

tion (1)⇒ (2), we know that this map is nothing but the inclusion R(U) ↪→ X(U).

This finishes the proof.

The pcdh topology on Pk induces topologies on Vk and V ′k which we also call pcdh.

The next corollary gives a description of these topologies.

Corollary V.10. The categories of pcdh-sheaves on Vk and V ′k are equivalent to

the category of pcdh-sheaves on Pk. Moreover, pcdh-sheaves on Vk and V ′k can be

characterized as follows.

1. A presheaf F on Vk such that F (∅) = 0 is a pcdh-sheaf if and only if for

every smooth and projective variety X, and every closed and smooth subscheme

Z ⊂ X, one has

F (X) ' ker{F (X̃)⊕ F (Z)→ F (E)}

where X̃ is the blow-up of X in Z and E ⊂ X̃ is the exceptional divisor.

2. A presheaf F on V ′k such that F (∅) = 0 is a pcdh-sheaf if and only if for every

smooth and projective variety X together with an action of a finite group G, and

every closed and smooth subscheme Z ⊂ X globally invariant under the action

of G, one has

F (X/G) ' ker{F (X̃/G)⊕ F (Z/G)→ F (E/G)}

where X̃ is the blow-up of X in Z and E ⊂ X̃ is the exceptional divisor.

Proof. By Hironaka’s resolution of singularities, every projective variety can be cov-

ered (with respect to the pcdh topology) by smooth and projective varieties, i.e., by

objects in the subcategory Vk (and hence V ′k). Thus, the first claim follows from [3,

Théorème III.4.1].
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Next, we only treat (2) as the verification of (1) is similar and in fact easier. The

condition in (2) is necessary for F to be a pcdh-sheaf as (X̃/G→ X/G, Z/G→ X/G)

is a pcdh-cover. Hence we only need to show that the condition is sufficient.

Let X/G ∈ V ′k where X is a smooth and projective variety and G is a finite

group acting on X. It suffices to show that F (X/G) ' ColimR⊂(X/G) F (R) where

R ⊂ (X/G) varies among covering sieves for the pcdh-topology on V ′k. We will prove

a more precise statement namely: any covering sieve R ⊂ (X/G) can be refined into

a covering sieve R′ ⊂ (X/G) such that F (X/G) ' F (R′).

By V.9, there exists a pcdh-cover (Yi → (X/G))i with Yi ∈ V ′k and such that

R ⊃ Image(
∐

i Yi → (X/G)). Using equivariant resolution of singularities, we may

find a sequence of equivariant blow-ups in smooth centers Zi ⊂ Xi:

Xn → · · · → X1 → X0 = X

such that the covering family

(Xn/G→ X/G, Zn−1/G→ X/G, · · · , Z0/G→ X/G) (5.2.1)

is a refinement of the sieve R. Using induction and the property satisfied by F from

(2), we see that

F (X/G) ' ker{F (Xn/G)⊕ F (Zn−1/G)⊕ · · · ⊕ F (Z0/G) (5.2.2)

−→ F (En/G)⊕ · · · ⊕ F (E1/G)}

where Ei ⊂ Xi is the exceptional divisor of the blow-up with center Zi−1. It is easy

to deduce from (5.2.2) that F (X/G) ' F (R′) when R′ ⊂ (X/G) is the image of the

covering family (5.2.1).
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(1971).

[27] S. Habibi, M.E. Arasteh Rad, On the motive of G-bundles, arXiv:1112.4110v3.

[28] P. S. Hirschhorn, Model categories and their localizations. volume 99 of Mathematical Surveys
and Monographs , American Mathematical Society, 2009,

[29] S. Hollander, A Homotopy Theory for Stacks, Israel Journal of Math. 163 (2008), 93-124.

[30] J.-L. Colliot-Thelene, R.T. Hoobler, B. Kahn. The Bloch-Ogus-Gabber theorem. Fields Institute
for Research in Mathematical Sciences Communications Series 16, A.M.S., 1997, 31-94.

[31] A. Huber, Realization of Voevodsky’s motives, Journal of Algebraic Geometry 9(4): 755-799,
2000.
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