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Chapter 1

Introduction

The aim of this thesis is to study homotopy theory of schemes and to give a good basis to study the

A1-fundamental groups. We will define a good homotopy theory on the category Sm/S (smooth

S-schemes), where S is noetherian.

1.1 Nisnevich topology and stable homotopy category

To define this theory we need a good Grothendieck topology on Sm/S. Zariski topology turns

out to be too coarse. For example, X → Y , S-closed immersion, is not locally isomorphic to

a closed immersion of the form (An × {0})
⋂
U → An+m

⋂
U , where U is an open subscheme

of An+m. This kind of property exists if we take U to be étale over An+m. We also want the

cohomological dimension to be equal to the Krull dimension, so we can not use étale topology.

For example, the étale cohomological dimension of the small étale site over field is not zero in

general. So we use Nisnevich topology. In Chapter 2.3 we define Nisnevich topology and show

that the site (Sm/S)Nis has enough points. We will give a charecterisation of Nisnevich sheaves

on Sm/S using elementary distinguish square. We also show that the Nisnevich cohomological

dimension is equal to the Krull dimension.

We will follow the usual way of defining closed model category structure to obtain suitable

homotopy theories. For that in Chapter 2.1 we breifly recall the definition of closed model

categories and some homotopy theory of closed model categories. Then we briefly recall the

properties of simplicial sets.

For a closed model category structure we need to know the notion of weak equivalence, which

gives us the idea of all the morphism we invert in our homotopy category. First on the category

of simplicial sheaves over (Sm/S)Nis, we will define a morphism to be a weak equivalence if it

induces weak equivalence for every point. This will give us the the unstable homotopy category

of S in 2.4.

In Chapter 2.5, we will invert the morphism A1
S → S, i.e, A1

S → S will become a weak

equivalence. Following the construction of Morel and Voevodsky in [MV], we will define the A1

homotopy category. Also we will show that there exists an A1-localisation functor LA1 which we

will use in later sections.
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1.2 Properties of A1-fundamental groups

Let k be a field (mostly infinite), ∆opShv(Smk) will denote the category of simplicial sheaves over

the site (Smk)Nis. By ˜Smk , we will denote the category where the objects are smooth separated

finite type k-schemes and the morphisms are smooth morphisms between smooth schemes. Note

that a sheaf of sets over (Smk)Nis is always a sheaf of sets over ( ˜Smk)Nis.

Given a simplcial sheaf of sets on Smk, B , we will denote by πA
1

0 (B) the associated sheaf in the

Nisnevich topology to the presheaf U 7→ HomH(k)(U,B) , where H(k) denotes the A1-homotopy

category of smooth k-schemes ([MV]). Moreover if B is pointed, given an integer n ≥ 1, we

denote by πA
1

n (B) the associated sheaf of groups in the Nisnevich topology to the presheaf of

groups U 7→ HomH•(k)(
∑n
s (U+),B) , where H•(k) denotes the pointed A1-homotopy category

over (Smk)Nis and
∑
s the simplicial suspension (for pointed homotopy category see [MV, section

3], and for simplicial suspensions see [MV, page 83]).

Let A1 be the affine line over k.

Definition 1.2.1. 1. A sheaf of sets over Smk is said to be A1 invariant if for any X ∈ Smk,

the map S(X)→ S(A1 ×X) induced by the projection A1 ×X → X is a bijection.

2. A sheaf of groups G on Smk is said to be strongly A1 invariant if for any X ∈ Smk , the

map Hi
Nis(X;G)→ Hi

Nis(X×A1;G) induced by the projection is a bijection for i ∈ {0, 1}.

3. A sheaf M of abelian groups on Smk is said to be strictly A1 invariant if for any X ∈ Smk,

the map Hi
Nis(X;M)→ Hi

Nis(X ×A1;M) induced by the projection is a bijection for any

i ∈ N .

The definition is influenced from the fact that if A is an abelian group (or a group). Consider

the constant sheaf AX over topological spaces, for a connected topological space X, A(X) = A.

It has the property that for all X, we have isomorphisms on cohomology groups Hi(X,A) =

Hi(X×[0, 1], A) for all i ∈ N if A is abelian. If A is non-abelian then Hi(X,A) = Hi(X×[0, 1], A)

for i ∈ {0, 1}.
On the other hand if O = C0(−; R), that is the sheaf of R-valued continuous function on a

topological space X. The cohomology groups H0(X,O) and H0(X × [0, 1], O) are not same in

general.

In both cases, we have a topological group. In the first case, AX is discrete, in the other, O

is not.

Our main objective in Chapters 3, 4, 5 is to prove that πA
1

1 (B) is strongly A1-invariant. and

for n ≥ 2 the sheaf πA
1

n (B) is strongly A1-invariant. So the homotopy sheaves will be A1-discrete.

It is not known whether the sheaf of sets πA
1

0 (B) is A1-invariant or not.

It can be shown that for n ≥ 2 the sheaf πA
1

n (B) is strictly A1-invariant.

It is belived that A1 fundamental group sheaf will play a fundamental role in the understanding

of A1-connected projective smooth varieties as the usual fundamental group plays a fundamental

role in the classification of compact connected differentiable manifolds.
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In Chapter 6, we will define A1-coverings and give the relation of it to the A1-fundamental

sheaves of groups. We will give a sketch of the following theorem ([MO1, page 119, theorem 4.8]

Theorem 1.2.2. Any pointed A1-connected space X admits a universal pointed A1-covering X̃→
X in the category of pointed covering of X. It is (up to unique isomorphism) the unique pointed

A1-covering whose source is A1-simply connected. It is a πA
1

1 (X)-torsor over X and the cannonical

morphism πA
1

1 (X)→ AutX(X̃) is an isomorphism.

1.3 Conclusion

The work can be roughly divided into three parts. One is developing the theory, so that we have

all the notions properly understood, which is done in Chapter 2. The second part is to understand

some of the algebraic geometry tools used to understand the A1-homotopy groups. This is done

in Chapters 3, 4, 5. The beautiful arguement of F.Morel to prove that A1-homotopy groups are

strongly A1-invariant is completely given. The third and the last part is to understand the tricks

coming from the Homotopy theory. It is done in the last chapter. Given these three different

ways of understanding, it will give us enough tools to understand the more recent works in this

area.

This work can help to understand different parts related to the A1-homotopy theory. Firstly

understanding the A1 homotopy category will give us the option to study the results of [MO1].

It can be shown that ([MO1, page 104, theorem 3.38])

Theorem 1.3.1. Let X be a pointed simplicial sheaf and n ≥ 0 an integer. If X is simplicially

n-connected then it is A1-n-connected, i.e πA
1

1 (X) is trivial for i ≤ n.

Also to find analogous tools from algebraic topology in A1-algebraic topology can be done. We

can study Hopf maps ([MO1]), obstruction theory ([MOREL]) also A1-homotopy classification of

vector bundles over smooth affine schemes.

There is a notion of A1-homology theory HA1

n , described in [MO1, section 3]. One can show

that HA1

n (X) of a simplcial set vanishes for n < 0 and are strictly A1 invariant sheaves for

n ≥ 0([MO1, page 102, corollary 3.31]. This is true for simplcial sheaves on Sm/k, where k is

field, and not true in general for arbitrary base . It is shown in [JY] that over a base of dimension

≥ 2, this is not true. For dimension one base, it is still an open problem. Also we can expect the

follwoing conjecture to be true :

Conjecture 1. Let X be a smooth quasi projective variety of dimension d. Then HA1

n (X) = 0

for n > 2d and if X is affine then HA1

n (X) = 0 for n > d.

Understanding and calculating A1-fundamental group sheaf for smooth projective algebraic

groups can be inresting. Calculation of higher A1-homotopy groups are not yet done for non

trivial cases and it turns out to be very difficult without using Milnor or Bloch-Kato conjecture.

The other aspect of this study can be understanding Milnor-Witt K theory and unramified

Milnor-Witt K theory. The results of Chapters 3, 4, and 5 will be useful, specially the tricks of

unramified sheaf of sets. This is described in of [MO1, section 2.2].

We can also describe analogue of Brower degree in our setting of Homotopy theory using the

following result from [MO1]
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Theorem 1.3.2. For n ≥ 2, the canonical morphism [An+1\{0} , An+1\{0}]H•(k) → KMW
0 (k) =

GW (k) is an isomorphism.

Thus in A1-homotopy theory we have all the relevant tools compared to the algebraic topology:

degree, homology, fundamental group, cobordism groups, classification of vector bundles etc. This

tools are used to construct surgery theory in algebraic topology, so it will be natural to ask for

surgery theory in A1-homotopy setting. But till now there is no obvious analogues for surgery.

Since the A1 fundamental group of a pointed projective smooth scheme is almost never trivial we

can not have h-cobordism theorem. A major step will be to find the analogue of the ”s-cobordism”

theorem, the generalization of the h-cobordism theorem in the presence of A1-fundamental group.
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Chapter 2

Basic Notions

In this chapter our main aim is to understand the A1-homotopy category. First we will discuss

the results from closed model category and simplicial sets which we want to extend for unstable

homotopy category, then we will construct the A1-homotopy category. The main references being

[GJ] for the simplcial sets and closed model ategory part, for the Nisnevich topology part [JR]

and for the homotopy theory part [MV].

2.1 Closed Model Category

Let C be a category having three classes of morphisms Fib, Cofib, W which are called fibration,

cofibration and weak equivalence respectively.

Definition 2.1.1. A trivial fibration is a map which is a fibration and weak equivalence both.

A trivial cofibration is a map which is cofibration and a weak equivalence both.

Definition 2.1.2. A morphism f : X → Y is a retract of a morphism g : X ′ → Y ′ if there exist

a commutative diagram of the following form.

X
p //

f

��

X ′
q //

g

��

X

f

��
Y

s // Y ′
t // Y

such that q ◦ p = id and t ◦ s = id.

So in the case of the homotopy category of topological spaces we have retraction in the usual

sense and in this case the map g is inclusion and f is the retraction of g .

Definition 2.1.3. Suppose we have a commutative diagram

A //

i

��

X

p

��
B // Y

A lifting is a morphism ϕ : B → X such that the two triangles commute.
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1. Let i : A→ B a morphism and E a class of morphism in C. We say that i has the left lifting

proerty with respect to E if for all commutative diagram of the above form, such that the

left vertical morphism is i and the right vertical moprhism is in E, there exists a lifting.

2. Let p : X → Y a morphism and E a class of morphism in C. We say that p has the right

lifting property by E if for all commutative diagram of the above form such that the right

vertical map is p and left vertical map is in E, there exists a lifting.

Definition 2.1.4. A category C, with three classes of morphisms Fib, Cofib and W is called a

closed model category if it satisfies the following axioms :

1. C has all limits and colimits.

2. If f and g are two composable morphisms and two of f , g or g ◦ f are weak equivalences,

then so is the third.

3. If the morpshism f is a retract of g and g is a weak equivalence, cofibration or fibration

then so is f .

4. Any fibration has the right lifting property with respesct to trivial cofibrations and any

cofibration has left lifting property with respect to trivial fibration.

5. Any morphism f can be functorially factorised as a composition p ◦ i where p is a fibration

and i is a trivial cofibration. It can also be factoried as q ◦ j where q is a trivial fibration

and j a cofibration.

In particular for a closed model category C we have φ and • as the initial and the final object

respectively.

Definition 2.1.5. Let X be an object of C. X is called cofibrant if the morphism φ → X is a

cofibration and X is called fibrant of the morphism X → • is a fibration.

Definition 2.1.6. Let D be a category and W a class of morphism in D. Suppose there exists

a category D[W−1] and a functor Q : D → D[W−1], such that for all w ∈ W , Q(w) is an

isomorphism and for all category Γ with a functor R : D → Γ such that for all w ∈ W , R(w) is

an isomorphism, then there exists a unique functor Φ : D[W−1]→ Γ with Φ ◦Q = R. Then the

category D[W−1] is called the strict localised category of D by W .

Definition 2.1.7. 1. Let A be an object of C. A cylinder object for A is given by a commu-

tative triangle of the follwoing form

A
∐
A

5

""DD
DD

DD
DD

D

i=i0ti1
��
Ã

σ // A

where i is cofibration, σ is a weak equivalence and 5 is the codiagonal.
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2. Let f and g be two morphism A→ B in C. A left homotopy of f and g relative to a cylinder

object (Ã, i, σ) of A is a morphism h : Ã→ B such that the following diagram commutes

A
∐
A

ftg
""EE

EE
EE

EE
E

i

��
Ã

h // B

3. Let f and g two morphisms A→ B in C. We say that f and g are left homotopic if there

exists a cylinder object (Ã, i, σ) and a left homotopy of f and g relative to (Ã, i, σ).

It can be shown by [GJ, lemma 1.5, page 69] that for A and B objects of C, the left homotopy

relation on HomC(A,B) is an equivalence relation if A is cofibrant. We can dually define path

objects, right homotopy with respect to a path object and the right homotopy relation.

Lemma 2.1.8. Let A be cofibrant and B be fibrant. If f and g are two morphisms A→ B in C.

Then the following are equivalent :

1. f and g are left homotopic;

2. f and g are right homotopic

We denote by π(A,B), the quotient of HomC(A,B) by the homotopy relation when A is cofibrant

and B is fibrant.

Proof. [GJ, corollary 1.9, page 72].

So we can define an unique category πCcf , whose objects are cofibrant and fibrant objects of

C and the set of morphisms between X and Y in πCcf is π(X,Y ). Compositions are induced by

the composition of the morphisms in C.

Lemma 2.1.9. 1. The strict localised category of C by W (weak equivalence) exists. It is

denoted by Ho(C) and the functor is γ : C → Ho(C).

2. If X is cofibrant and Y is fibrant, then the functor γ induces a bijection

π(X,Y ) = HomHo(C)(γX, γY ).

Proof. [GJ, theorem 1.11, page 75].

2.1.1 Derived Functors

Definition 2.1.10. Let C be a category, W be a class of morphisms. Let F : C → A be a functor

to any category A. Let C[W−1] exists and γ : C → C[W−1] be the functor of localisation. A

total right derived functor of F is a functor RF : C[W−1] → A with a natural transformation

ε : F  RF ◦γ, which satisfies the following universal property : For all functor G : C[W−1]→ A,

with a natural transformation εG : F  G ◦ γ, there exists a unique natural transformation

θ : RF  G such that εG = (θ ? γ) ◦ ε.

Let (C,F ib, Cofib,W ) be a closed model category, A be any other category and F : C → A

be a functor. Let F transforms weak equivalences of fibrant objects into isomorphisms (or trivial

fibrations of fibrant objects into isomorphisms). Then we have the following proposition
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Proposition 2.1.11. F has a total right derived functor RF : Ho(C)→ A. Moreover if X is a

fibrant object in C, then the morphism F (X)→ RF (X), induced by ε is an isomorphism.

.

Proof. [JR, page 28, Prop 2.43].

We can dually define total left derived functor LF of a functor F .

Definition 2.1.12. Let C and D be two closed model categories, F : C → D and G : D → C be

adjoint functors. (G,F ) is called adjunction of Quillen if G preserves cofibration and F preserves

fibrations. (G,F ) is called equivalence of Quillen if moreover for all cofibrant object X in D and

all fibrant object Y in C, if f : X → FY and g : GX → Y are the morphisms corresponding to

the adjunction (G,F ), then f is a weak equivalence in D if and only if g is a weak equivalence in

C.

(G,F ) is an adjunction of Quillen, then G preserves weak equivalences of cofibrant objects

and F preserves weak equivalences of fibrant objects.

LG : Ho(D)→ Ho(C) denotes the total left derived functor of the functor γ ◦G : D → Ho(C)

and RF : Ho(C)→ Ho(D) denotes the total right derived functor of γ ◦ F : C → Ho(D).

Theorem 2.1.13. If (G,F ) is adjunction of Quillen, then the functors (LG,RF ) are adjoint.

Moreover, LG and RF gives equivalence of categories if and only if (G,F ) is an equivalence of

Quillen.

Proof. [JR, page 29, thm 2.47].

2.2 Simplicial Sets

The category of simplicial sets are the basic building blocks of homotopy theory. This will be the

first example of closed model category (on simplicial sets) and we will use this category to define

the homotopy theory of schemes.

Definition 2.2.1. Let 4 denote the category whose objects are denoted by [n] for every non-

negative integer n and morphisms [n]→ [m] is non-decreasing functions {0, ..., n} → {0, ...,m}.

Definition 2.2.2. For C any category, 4opC is the category of covariant functors F : 4op → C.

For category of sets we will use 4opSets, call it the category of simplicial sets.

For every positive integer n and 0 ≤ i ≤ n we have the unique injective non decreasing

morphism di : [n − 1] → [n] whose image does not contain i. For every non negative integer n

and 0 ≤ i ≤ n, we have the unique surjective non decreasing morphism si : [n + 1] → [n] which

collapses i and i + 1 to i. The di’s are called coface and si’s are called codegeneracies. In case

of simplicial set F : 4op → Sets, di := F (di) and si := F (si), are called face and degeneracy

morphisms respectively.

For all non-negative integer n, let | 4n |:=
{

(x0, x1, ..., xn) ∈ Rn+1 |
∑n
i=0 xi = 1

}
. So we

have cosimplicial objects in Top, where Top is the category of topological spaces, defined by

| 4• |: 4→ Top, which sends [n] to | 4n |.
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Definition 2.2.3. Let X be a topological space. SX is the simplicial set which associates to

every integer n, the set HomTop(| 4n |, X). We have canonical face and degeneracy maps coming

from the coface and degeneray map of the cosimplcial object | 4• |. SX is called the singular

simplicial set of X.

Proposition 2.2.4. The functor S : Top → 4opSets admits a right adjoint | − |, called the

topological realisation.

Proof. [GJ, prop 2.2, page 7].

Definition 2.2.5. For every non-negative integer n, 4n is defined to be the simplcial set , such

that (4n)m := Hom4([n], [m]), the faces and degeneracies are those coming from the coface and

codegeneracies of 4.

Definition 2.2.6. ∂4n is the subsimplicial set of4n, generated by the non degenerated simplices

of dimension n − 1 of 4n. For all positive integers n and 0 ≤ k ≤ n,
∧n
k (the k-th horn) is the

subsimplicial set of 4n generated by the n− 1-th simplices of 4n os the form di(id[n]) for i 6= k.

Definition 2.2.7. Let f : X → Y ∈ Top. Then f is called weak equivalence of topological spaces

if π0(f) : π0(X)→ π0(Y ) is bijective and for all x ∈ X and n ≥ 1, πn(f) : πn(X,x)→ πn(Y, f(x))

is isomorphism.

Definition 2.2.8. In the category of4opSets, cofibrations are defined to be the monomorphisms,

weak equivalences is a morphism f such that | f | is a weak equivalence of topological spaces,

fibration are the morphism which has unique right lifting property with respect to all the inclusions∧n
k →4n, for n positive integers, and 0 ≤ k ≤ n.

Theorem 2.2.9. The category 4opSets with the fibration, cofibration and weak equivalences

defined in the previous definition, is a closed model category. Moreover, a morphism is trivial

fibration if and only if it has right lifting property with respect to all inclusions ∂4n → 4n for

all n.

Proof. [GJ, 11.2,11.3, page 61-62].

LetX,Y ∈ 4opSets, hom(X,Y ) is the simplicial set that associates to each [n], Hom4opSets(X×
4n, Y ).

Lemma 2.2.10. 1. For X,Y, Z ∈ 4opSets, we have a canonical isomorphism hom(X,hom(Y, Z)) ∼=
hom(X × Y, Z).

2. For X,Y ∈ 4opSets, we have a canonical bijection of sets hom(X,Y )0 = Hom4opSets(X,Y ).

3. If i : A → B is a cofibration and p : X → Y a fibration in 4opSets, then the following

morphism hom(B,X) → hom(A,X) ×hom(A,Y ) hom(B, Y ) is a fibration and it is a trivial

fibration if one of i or p is a weak equivalence.

Proof. [GJ, proposition 5.1, 5.2, page 21, 22].
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Htop will denote the homotopy category of 4opSets with the given closed model category

structure in this section.

2.2.1 Dold-Kan correspondance

Let D≤0(Ab) be the full subcatgeory of the derived category D(Ab) formed by the complexes

concentrated in degrees ≤ 0. Let comp+(Ab) is the category of complexes of abelian groups

(differential of degree −1 or homological complexes) concentrated in degrees ≥ 0.

Definition 2.2.11. Let A ∈ 4opAb, the Moore complex associated to A is the object in

comp+(Ab) whose degree n abelian group is An, and for all n ≥ 1, ∂ =
∑n
i=0(−1)idi. The

normalized complex NA ∈ comp+(Ab), associated to A is the subcomplex of the Moore complex

of A, such that NAn =
⋂n−1
i=0 kerdi ⊂ An and the differentials of Moore complex generates the

differential of the normalized complex. If X is a simplicial set, C∗(X) ∈ comp+(Ab) is the Moore

complex of the simplicial abelian group ZX, where Z : 4opSets→4opAb is the right adjoint to

the forgetful functor 4opAb→4opSets.

Theorem 2.2.12. 1. The functor N : 4opAb→ comp+(Ab) is an equivalence of categories.

2. The inclusion NA→ A in comp+(Ab) is a homotopy equivalence for all A ∈ comp+(Ab).

Proof. [GJ, corollary 2.3, page 149].

Lemma 2.2.13. 1. The functors X → C∗(X) transfers weak equivalences to quasi isomor-

phisms.

2. All simplicial groups are simplicially fibrant.

3. For all simplicial abelian groups A and all n ≥ 1, we have a canonical isomorphism

πn(A, 0) = Hn(NA).

Proof. [GJ, lemma 3.4, page 12, corollary 2.7 page 153].

2.3 Nisnevich topology

2.3.1 Charecterisation of Nisnevich Sheaves

Let S be a noetherian scheme of finite dimension. Sch/S (resp Sm/S ) the category of schemes

(resp. smooth schemes) of finite type over S. Let OX,x (resp OhX,x ) be the local ring ( resp. the

henselisation of the local ring ) of X at x, where x ∈ X.

Proposition 2.3.1. Let X be a scheme of finite type over S and U = {Ui → X} a finite family

of étale morphisms in Sch/S. Then the following are equivalent

1. For any point x of X there is an i and a point u of Ui over x such that the corresponding

morphism of residue fields is an isomorphism which maps to x with same residue field.

2. For any point x of X, the morphism of S schemes ti(Ui×X SpecOhX,x)→ SpecOhX,x admits

a section.

12



Proof. [MV, page 95, proposition 1.1]

Remark 1. The collection of families of étale morphisms {Ui → X} in Sm/S satisfying the

equivalent conditions of the proposition forms a pretopology on the category Sm/S. The cor-

responding topology is called the Nisnevich topology on Sm/S.The corresponding site will be

denoted by (Sm/S)Nis and called the grand Nisnevich site of S . Similarly suppose XNis de-

notes the category of seprated, finite type, étale X schemes then the collection of families of

étale morphisms {Ui → Y } in XNis satisfying the equivalent conditions of the proposition forms

a pretopology on the category XNis. The corresponding topology is called the Nisnevich topology

on XNis.The corresponding site will be denoted by XNis and called the small Nisnevich site of X

Definition 2.3.2. Let X be a scheme , the family of {Ui → X} satisfying the properties of the

proposition 2.3.1 of this section is called covering of X and is denoted by CovNis(X).

Example 1. When char k 6= 2, the two morphisms j : U0 = A1 \ {a} ↪→ A1 and z 7→ z2 : U1 =

A1 \ {0} → A1 forms a Nisnevich covering of A1 if and only if a ∈ (k∗)2 . They form an étale

covering of A1 for any nonzero a ∈ k.

Lemma 2.3.3. Let {Ui → X} is a Nisnevich covering then there is a nonempty open V ⊂ X

and an index i such that Ui ×X V → V has a section.

Proof. Let X be reduced. Then we can take any generic point x ∈ X, such that by hypothesis

∃u ∈ Ui for somei over x, such that κ(x) ∼= κ(u). So Ui → X induces a birational morphism

between a closed subscheme of Ui and X. Hence we have a nonempty open subset V ⊂ X and an

index i such that Ui×X V → V has a section. Since {Ui → X} is an étale cover and by [MILNE,

page 30, theorem 3.23] , there is an equivalence of categories of Xét and (Xred)ét, we have the

result.

Theorem 2.3.4. For noetherian scheme X , all family in CovNis(X) admits a finite subfamily

in CovNis(X).

Proof.

Definition 2.3.5. A splitting sequence of length n ≥ 0 for a morphism of S-schemes p : U → X

is a decreasing sequence of closed subschemes of X (φ = Zn+1 ⊂ Zn ⊂ ... ⊂ Z0 = X) such that

for all 0 ≤ i ≤ n, the morphism of S-schems U ×X (Zi − Zi+1) → Zi − Zi+1 induced by p after

base change admits a S-section.

Lemma 2.3.6. Let X noetherian scheme and U = {fi : Ui → X}i∈I ∈ CovNis(X). Let W =∐
i∈I Ui, and p the canonical morphism W → X induced by the morphisms fi. Then p has a split

sequence.

Proof. Let Z0 = X. Now suppose we have constructed Zi such that Zi 6= φ then we have the

étale morphism W ×X Zi → Zi , hence there exists and open dence set of Ui+1 of Zi such that

the morphism W ×X Ui+1 → Ui+1 splits . Take Zi+1 = (Zi−Ui+1)red. Since X is noetherian any

decreasing sequence of closed sets stabilizes after finite steps hence we get a split sequence for p.
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Let φ = Zn+1 ⊂ Zn ⊂ ... ⊂ Z0 = X be the splitting sequence for the morphism p : W → X.

We have the section si of the morphism U ×X (Zi − Zi+1) → Zi − Zi+1 for all 0 ≤ i ≤ n ,

moreover Zi − Zi+1 is noetherian and so the image of all these Zi − Zi+1 is noetherian , hence

it is inside an open set of W of the form
∐
i∈J Ui, where J is finite, and hence the subfamily

(Uj →fj X)j∈J ∈ CovNis(X).

Definition 2.3.7. A presheaf of sets on a site T is a contravariant functor T → Sets. The

category of sets can be replaced by any category desired.

Definition 2.3.8. Suppose F : T → Sets is a presheaf of sets on a site T . If for every object U ,

every covering U = {Ui → U} two sections s, t ∈ F (U) agree on every restriction s|Ui = t|Ui if

and only if s = t in F (U) then the presheaf is called separated.

Definition 2.3.9. A sheaf is a presheaf on a site T that satisfies the following condition: Given

an object U , a covering U = {pi : Ui → U} of U and a set of elements si ∈ Ui such that for each

i, j we have p∗i si = p∗jsj ∈ F (Ui ×U Uj) there is a unique element s ∈ U such that s|Ui = si for

each i.

Definition 2.3.10. Let P be a presheaf. For each U define two elements of P (U) to be equivalent

if there is a covering {Ui
pi→ U} such that p∗i (a) = p∗i (b) for each i.

For each U , Let P ′(U) := (P (U)/ v) where v is the equivalence relation defined in the

previous definition.

Lemma 2.3.11. P ′ is a well-defined presheaf.

Proof. If V
f→ U is an arrow in the site, a, b two different representatives from an equivalence

class of P ′(U) and {Ui
pi→ U} is a covering on which a and b agree. The set {Ui ×U V

π→ V } is a

covering of V and by commutivity of

Ui ×U V //

��

V

��
Ui // U

f∗(a) and f∗(b) in P (V ) agree on each restriction to P (Ui ×U V ). Hence, the map f ′ : P ′(U)→
P ′(V ) induced by f∗ is well-defined.

Definition 2.3.12. Given a presheaf P , for each U in the site and each covering of U denote by

H0(U , P ) the equalizer of the maps

ΠP (Ui)⇒ ΠP (Ui ×U Uj)

which are induced by projections.

Definition 2.3.13. For each refinement U ′ of U there is a well-defined mapH0(U , P )→ H0(U ′, P ).

For U an object in the site and P a presheaf, set

aP (U) = lim−→
U
H0(U , P ′)

14



Lemma 2.3.14. Let functor a : PSh(T ) → Sh(T ) associating a sheaf to a presheaf is left

adjoint to the inclusion Sh(T ) → PSh(T ). That is, for a presheaf F and a sheaf G there is a

natural bijection HomSh(T )(aF,G) → HomPSh(T )(F,G). In particular the inductive limit esists

in Sh(T ) and the functor a commutes with it. Projective limits exist in the category Sh(T ) and

the the inclusion functor i commutes with it. The functor a commutes with every finite projective

limit.

Proof. [SGA4, 2 , 3.4] .

Definition 2.3.15. T be a small site. A simplicial presheaf is a contravariant functor from

T → 4opSets. Equivalently a simplicial presheaf can be defined as the simplicial object in the

category of presheaves on T .

Definition 2.3.16. A simplicial sheaf over a site T is a simplicial object in the category of sheaves

over T .

S be a noetherian scheme .

Definition 2.3.17. An elementary distinguished square in (Sm/S)Nis is a cartesian square of

the form

U ×X V //

��

V

p

��
U

j // X

such that the p is étale and j is an open immersion and p−1(X − U) → (X − U) is an

isomorphism where X − U and p−1(X − U) is considered with reduced structures.

Example 2. When chark 6= 2, the two morphisms j : U0 = A1 \ {a} ↪→ A1 and z 7→ z2 : U1 =

A1 \ {a′, 0} → A1 forms an elementary distinguished square of A1, where a′ is one of the roots of

the equation x2− a, if and only if a ∈ (k∗)2. More generally if dimX ≤ 1, any Nisnevich covering

of X admits a refinement {U, V } such that

U ×X V //

��

V

p

��
U

j // X

is an elementary distinguished square. Let i : E → F separable extension, and v is a discrete

valuation of F which restricts to a discrete valuation w on E with ramification index 1,and

moreover if the induced map ī : κ(w)→ κ(v) is an isomorphism, then

SpecE //

��

SpecOw

p

��
SpecF

j // SpecOv

is an elementary distinguished square.
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The following theorem describes the Nisnevich sheaves with respect to elementary distin-

guished square.

Theorem 2.3.18. A presheaf of sets F on Sm/S is a sheaf in the Nisnevich topology if and only

if for any elementary distinguished square as in Definition 2.3.17 ,the square of sets

F (X) //

��

F (U)

��
F (V ) // F (U ×X V )

is cartesian

Proof. For the if case, to prove that F is a sheaf of sets in the Nisnevich topology fix a Nisnevich

covering {Ui → X} for any X ∈ Sm/S. An open scheme V ⊂ X is said to be good with respect

to the given covering if F (V )→
∏
F (Ui ×X V )⇒

∏
F (Ui ×X Uj ×X V ) is an equilizer diagram.

We have to show that X is itself good. Suppose V ⊂ X is the maximal open subset which is good.

Now if V is not equal to X then take the closed scheme Z = X \ V , by lemma 6.3.1 there exists

an index i and a nonempty open set W ⊂ Z such that Ui ×Z W →W splits. Let X ′ ⊂ X be the

compliment of the closed set Z\W . Then V and U ′i = Ui×XX ′ forms an elementary distinguished

square over X ′ . Pulling back along each U ′j = Uj ×X X ′ gives elementary distinguished squares.

So we have cartesian squares of the following forms

F (X ′) //

��

F (U ′i)

��
F (V ) // F (U ′i ×X V )

F (U ′j) //

��

F (U ′i ×X U ′j)

��
F (U ′j ×X V ) // F (U ′i ×X U ′j ×X V )

Now we know that V is good. To show X ′ is good too, we observe the follwoing diagram

F (X ′) //

��

∏
F (U ′j)

////

��

∏
F (U ′i ×X U ′j)

��
F (V ) //

∏
F (U ′j ×X V ) // //

∏
F (U ′i ×X U ′j ×X V )

Suppose {bj} ∈
∏
F (U ′j) such that bj | F (U ′k×X U ′j) = bk | F (U ′k×X U ′j) and {bj} gets maped

to {b′j} ∈
∏
F (U ′j ×X V ), then b′j | F (U ′k ×X U ′j ×X V ) = b′k | F (U ′k ×X U ′j ×X V ). So there

exists a ∈ F (V ) which maps to {b′j}. But by the first cartesian diagram we get a b ∈ F (X ′)

mappaing to a and whose restriction to F (U ′i) is bi. By the secodn cartesian diagram we get that

b restricted to each U ′j is bj . Hence X ′ is also good.

For the only if case let F be Nisnevich sheaf on Sm/S and we have the following elementary

distinguished square
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B //

��

Y

p

��
A

j // X

Where j is an open immersion p is étale and p−1(X − A) → (X − A) is an isomorphism, B =

Y ×X A. We need to prove that F (X) = F (Y ) ×F (B) F (A). Since F is a Nisnevich sheaf, by

the separated property we have F (X)→ F (Y )×F (B) F (A) injective. We also have the following

equalizer diagram

F (V )→ F (A)× F (Y )⇒ F (A)× F (B)× F (Y ×X Y ). Since (4(Y ), B ×A B) is a Nisnevich

covering of Y ×X Y , we have F (Y ×X Y ) → F (Y ) × F (B ×A B) is injective. Now, if (y, a) ∈
F (Y )×F (B) F (A), then the two restriction maps from F (Y )× F (A) to F (B) maps (y, a) to the

same element in F (B), also the two maps sends (y, a) to the same element in F (A). It is enough

to show that the two maps from F (Y ) → F (Y ×X Y ) maps (y, a) to the same element, or more

precisely the two maps F (Y )→ F (B ×A B) maps (y, a) to the same element, but then these two

maps factors through F (B), so by hypothesis our claim is proved.

Theorem 2.3.19. Let X be any smooth scheme over S , then the presheaf represented by Y 7→
HomSm/S(Y,X), for Y ∈ Sm/S, is a sheaf. ( (Sm/S) endowed with Nisnevich topology).

So the category Sm/S(resp. XNis) is a full subcategory of Sh(Sm/S)(resp Sh(XNis).

Lemma 2.3.20. For any elementary distinguished as in the definition 2.3.17 , the cannonical

morphism of Nisnevich sheaves V/(U ×X V )→ X/U is an isomorphism .

Proof. By Yonedas lemma and previous two theorems we get that the diagram of representable

sheaves coming from any elementary distinguished square is a cocartesian square in the category

Sh(Sm/S)Nis. Again by Yonedas lemma for the covering coming from elementary distinguished

square U
⊔
V → X gives an epimorphism of sheaves. Also the maps of sheaves U → X for any

open immersion gives a monomorphism of sheaves. So we have the isomorphism of sheaves.

2.3.2 Functoriality of the small Nisnevich site

Let X and Y be Noetherian schemes and f : X → Y be a morphism of schemes. There exists

a functor − ×Y X : YNis → XNis. We can define a direct image functor f] : PSh(XNis) →
PSh(YNis) by the formula f]F (Z) = F (Z ×Y X) for all F ∈ PSh(XNis) and Z ∈ YNis. For all

F ∈ Sh(XNis), we have f]F ∈ Sh(YNis). So f] induces a functor f∗ : Sh(XNis) → Sh(YNis).

The functors f] and f∗ admits left adjoints f ] : PSh(YNis) → PSh(XNis) and f∗ : Sh(YNis) →
Sh(XNis) respectively and we have a ◦ f ] ∼= f∗ ◦ a. Observe that f∗ commutes with all finite

projective limit by [SGA4] IV 4.9.2, since YNis has all finite projective limits and − ×Y X is a

continuous functor commuting with all finite projective limit. So we have the following proposi-

tion.

Proposition 2.3.21. The functor −×Y X : YNis → XNis induces a morphism of sites XNis →
YNis. Moreover the couple (f∗, f∗) is a morphism of topos Sh(XNis)→ Sh(YNis)
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Proof. [JR] page 9, prop 1.17.

Suppose f : X → Y is étale , by composing with f we get a functor XNis → YNis which gives

a functor f ]? : PSh(YNis)→ PSh(XNis).

Let F ∈ PSh(YNis) and G ∈ PSh(XNis), Let α : Hom(F, f]G) → Hom(f ]?F,G) be the

morphism which sends ψ : F → f]G, to α(ψ) : f ]?F → G, such that for all W ∈ XNis, α(ψ)W is

the compostion ψW : f ]?F (W ) = F (W )→ f]G(W ) = G(W ×Y X) and the structtural morphism

G(W ×Y X)→ G(W ). By Yonedas lemma Hom(f ]F,G) = Hom(F, f]G)→ Hom(f ]?F,G) gives

a morphism f ]? → f ]. It can be shown that it is an isomorphism and we have the following lemma.

Lemma 2.3.22. There exists a canonical morphism of functors f ]? → f ] which is an isomorphism.

Moreover if F ∈ Sh(YNis), then f ]F ∈ Sh(XNis) and the restriction of f ] to Sh(YNis) induces

the inverse image functor f∗ : Sh(YNis)→ Sh(XNis).

Proof. [JR] page 10, lemma 1.18.

Now let x ∈ X and jx : SpecOX,x → X be the canonical morphism of schemes. The open

subschemes of X containing x is ordered ( by the reverse of inclusion). So we have a projective

system (Xλ)λ∈L, where Xλ’s are open subschemes of X containing x. So we can identify SpecOX,x
with lim←−λ∈L Xλ. Let fµ : Yµ → Zµ be morphisms of Xµ schemes of finite type and Yλ := Yµ×Xµ
Xλ if λ ≥ µ, Yx := Yµ ×Xµ SpecOX,x, Then Yx → Zx si one of isomorphism, monomorphism,

immersion, étale, finite, separated, affine, proper, surjective, qasiprojective iff for all λ sufficiently

big Yλ → Zλ satisfies the property.

Let Z ∈ (SpecOX,x)Nis, we can choose λ ∈ L, Zλ ∈ (Xλ)Nis, and an isomorphism Z ∼=
Zλ ×Xλ SpecOX,x.

For all F ∈ PSh(XNis) and Z ∈ (Spec(OX,x))Nis let j]x,?F (Z) := lim−→µ≥λ
F (Zλ ×Xλ Xµ. This

gives a morphism jx,? : PSh(XNis)→ PSh((SpecOX,x)Nis).

Lemma 2.3.23. There exists a canonical isomorphism of the functor jx,? → j]x. Moreover if

F ∈ Sh(YNis), then j]xF ∈ Sh(XNis) and the restriction of j]x to Sh(YNis) induces the inverse

image functor j∗x : Sh(YNis)→ Sh(XNis).

Proof. [JR], page 10, lemma 1.19

2.3.3 Points of Nisnevich Sites

Definition 2.3.24. A fiber functor (or points) on the site (Sm/S)Nis (or XNis) is a functor

Φ : Sh((Sm/S)Nis)→ Sets (or Sh(XNis)→ Sets) which commutes with all inductive limits and

all finite projective limits.

Let k be a field. F ∈ PSh((Speck)Nis). Then it can be shown that F ∈ Sh((Speck)Nis) if and

only if F (∅) is singleton and F (X
∐
Y ) → F (X) × F (Y ) is bijective for all X,Y ∈ (Speck)Nis.

This property will give us that the functor Γ : Sh((Speck)Nis) → Sets, that associates to each

F ∈ Sh((Speck)Nis), the set F (Speck), is a fiber functor.

Let X be noetherian scheme. Let y be k point of X, where k is a field. We can define a functor

−y : Sh(XNis)→ Sets, that associates to each F ∈ Sh(XNis), the set Γ(y∗F ), where ?(y∗, y∗) is
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the morphism of topos Sh((Speck)Nis)→ Sh(XNis). It can be shown easily that for any k point

y of X, −y is a fiber functor over XNis.

Let NbdNisx,X be the category whose objects are (V, v), where V ∈ XNis, and v ∈ V , over

x ∈ X, such that the induced morphism κ(x) → κ(v) is an isomorphism. Morphisms in NbdNisx,X

between (V, v) → (V ′, v′) are morphisms V → V ′ in XNis which sends v to v′ over x. We have

the follwoing result :

Proposition 2.3.25. Let x ∈ X, and the canonical morphism x : κ(x) → X. Then the functor

−x : Sh(XNis)→ Sets can be identified with the functor F 7→ lim−→(V,v)∈NbdNisx,X

F (V ).

Proof. [JR], page 12, Prop 1.26.

Definition 2.3.26. A family (Φi)i∈I of fiber functors on a site T is called conservative if for all

morphism f in Sh(T ), f is an isomorphism if and only if for ∀i ∈ I, Φi(f) is bijective. We say

that T has enough points if T has a conservative family of fiber functors.

It is easy to verify that if (Φi)i∈I is a conservative family of fiber functors on a site T and

f : F → G ∈ Sh(T ) is a morphism, then f is monomorphism (resp. epimorphism) if and only if

∀i ∈ I , Φi is injective (resp. surjective). By using the previous description of the fiber functor

−y, where y is a k point of X, inducing finite separable extension of fields, we have the following:

Theorem 2.3.27. Let X be a noetherian scheme. The family of fiber functors −y, where y is a

k point of X inducing finite seprable field extension, is a conservative family of fiber functors on

the site XNis. Hence XNis has enough points.

Proof. [JR], page 13, Thm 1.30.

Now let S be a noetherian schemeand X ∈ (Sm/S)Nis. We have a canonical functor πX :

XNis → (Sm/S)Nis. So we can define a functor (πX)] : PSh((Sm/S)Nis)→ PSh(XNis), which

associates to every F ∈ PSh((Sm/S)Nis), a presheaf (πX)](F ) defined by , (πX)](F )(Z) =

F (πX(Z)), ∀Z ∈ XNis. By [SGA4] IV 4.9.2 and III 2.1, we have that (πX)] induces a functor

(πX)∗ : Sh((Sm/S)Nis)→ Sh(XNis) and (πX)∗ has a left adjoint (πX)∗ such that ((πX)∗, (πX)∗)

defines a morphism of topos Sh((Sm/S)Nis) → Sh(XNis). Moreover by [SGA4] III 2.3.3 (πX)∗
commutes with all inductive limits. Now, let X ∈ (Sm/S)Nis, and y is a k-point, where k is a

field. We can define a fiber functor using our previous descriptions −y : Sh((Sm/S)Nis)→ Sets,

which associates to every F ∈ Sh((Sm/S)Nis), the set Γ(y∗(πX)∗F ). The family −x of functors,

∀x ∈ X and ∀X ∈ (Sm/S)Nisgives a conservative family of fiber functors on the site (Sm/S)Nis.

So (Sm/S)Nis has enough points.

2.3.4 Cohomology for Nisnevich Sheaves

Definition 2.3.28. Let S = (C, T ) be a site. Let X ∈ C. For all integer n ≥ 0 we define

Hn
S (X;−) the n-th right derived functor of the functor F → F (X) where F is a sheaf of abelian

groups over S.

Lemma 2.3.29. Let S is a Noetherian scheme and X ∈ Sm/S. For all sheaf of abelian groups

F over Sm/SNis, there exist a canonical isomorphism Hn
XNis

(X; (πX)∗F ) ∼= Hn
Sm/SNis

(X;F ) for

all integer n ≥ 0.
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Proof. Since (πX)∗ is an exact functor and it has a left adjoint (πX)∗, hence (πX)∗ sends injective

sheaves to injective sheaves, so we have the isomorphism since (πX)∗ is left exact.

Lemma 2.3.30. Let F is a sheaf of abelian groups over XNis. Suppose for all open imersions

V → U in XNis, the map F (U)→ F (V ) is surjective. Then , for all n ≥ 0 and for all Y ∈ XNis

we have Hn
XNis

(Y ;F ) = 0.

Proof. F is flasque on X. To show that H1
XNis

(Y ;F ) = 0, it is enough to show that if 0→ F →
G → H → 0 be an exact sequence of sheaves on XNis of abelian groups, then for all Y ∈ XNis

we have G(Y )→ H(Y ) is surjective. We can assume that Y = X. Let h ∈ H(X). There exist a

maximal open set U ⊂ X and s ∈ G(U) such that image of s = h |U (By noetherian property).

Suppose U 6= X. Let x be a generic point of X−U and let F = (X−U)red. Now by the exactness

condition of the Nisnevich sheaves there exists V ∈ XNis and t ∈ G(V ) such that t gets mapped to

h |V and V ×X κ(x)→ κ(x) is an isomorphism. Since F ×SpecOx,X SpecOX,x is closed subscheme

of SpecOx,X and it is reduced with the generic point x, we have F ×X SpecOX,x ∼= κ(x), so we

have an isomorphism V ×XF×XSpecOX,x ∼= F×XSpecOX,x. So there exists an open set W such

that x ∈W and we have an isomorphism V ×X F ×XW → F ×XW . Let U ′ = U
⋃
W . Then we

have (U, V ×XU ′) an elementary Nisnevich covering of U ′. And since F (U ′)→ F (U) is surjective,

we can get s′ ∈ G(U ′) such that s′ gets mapped to h |U ′ . So we get a contradiction. Now it can

be shown that all injective sheaves are flasque and if 0 → F → G → H → 0 exact, moreover F

and G are flasque then H is flasque. By the previous arguement we have H1
XNis

(Y ;F ) = 0 for F

flasque, hence by induction on n > 0 we get Hn
XNis

(Y ;F ) = 0.

Proposition 2.3.31. Let F be a sheaf of abelian groups over XNis and (U → X;V → X) be an

an elementary Nisnevich covering of X. Then there exist a long exact sequence of the following

form Hn−1
Nis (U ×X V ;F ) → Hn

Nis(X;F ) → Hn
Nis(U ;F ) ⊕ Hn

Nis(V ;F ) → Hn
Nis(U ×X V ;F ) →

Hn+1
Nis (X;F ).

Proof. Let ZX be the sheaf of free abelian groups generated by the representable sheaf X. So

Hn
Nis(X;F ) ∼= Extn(ZX,F ).And we also have the folwoing cocartesian diagram coming from the

elementary Nisnevich square property of Nisnevich sheaves.

Z(U ×X V ) //

��

Z(U)

��
Z(V ) // Z(X)

So we have the proof.

Theorem 2.3.32. Let X be a Noetherian scheme of finite Krull dimension. Then for all sheaves

of abelian groups F over XNis and for all integer n > dimX, we have Hn
Nis(X;F ) = 0.

Proof. Proof by induction : Let the theorem be true for all Noetherian scheme of dimension < n.

Let π : XNis → XZar be the canonical morphism and Rqπ∗ be the q-th derived functor of the
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functor π∗. So by Leray spectral sequence we have Epq2 = Hp
Zar(X;Rqπ∗F ) =⇒ Hp+q

Nis (X;F ).

Now if X is noetherian scheme of finite Krull dimension, n be any non negative integer and F

is a sheaf of abelian groups on XZar. If for all x ∈ X, dimOx,X < dimX − n, we have Fx = 0,

then for all q > n we have Hq
Zar(X;F ) = 0. So for our case we have to show that Epq2 = 0

for p + q > n, which is by the previous statement same as showing (Rqπ∗F )x is zero for all

x ∈ X such that dimOx,X < q. But then by 2.3.30 (Rqπ∗F )x ∼= Hq
Nis(SpecOx,X , j

∗F ), where

j : SpecOx,X → X is the canonical morphism. So now let X be local noetherian scheme of

Krull dimension n and closed point x. The sheaf associated to the presheaf over XNis which

associates to every U ∈ XNis the sheaf of abelian groups Hn+1(U ;F |U ) is zero sheaf. So for all

element a ∈ Hn+1
Nis (X;F ), ∃V ∈ XNis such that V ×X κ(x) ∼= κ(x) and a |Hn+1

Nis (V ;F ) is zero. Let

U = X − x. Using proposition 2.3.31 for the elementary Nisnevich covering (U, V ) of X gives

Hn+1
Nis (X;F ) → Hn+1

Nis (X;F ) is injective (since U and U ×X V has dimension < n and by the

induction hypothesis). So a = 0, Hence Hn+1
Nis (X;F ) = 0.

2.4 Homotopy Category of a site with interval

2.4.1 Simplicial structure on 4opSh(Sm/S)Nis

[JR] and [MV]. Let S = (C, T ) be a site with enough points.

Definition 2.4.1. Let X ∈ 4opPSh(S) and n ≥ 1. The n-th homotopy presheaf of sets
∏
n X is

defined to be the presheaf that associates for every U ∈ C,

(
∏
n X)(U) := {(y, u), u ∈ X(U)0, y ∈ πn(X(U), u)}, with obvious restrictions as morphisms.

There exists an obvious morphism of presheaves of sets
∏
n X→ X0. The 0-th homotopy presheaf

of sets of X (denoted by
∏

0 X) is defined to be the presheaf which associates for every U ∈ C,

(
∏

0 X)(U) = π0(X(U)). For X ∈ 4opSh(S) and n ≥ 0, we define
∏T
n X = aT (

∏
n X). We have

a morphism(functorial) of sheaves
∏T
n X → X0 for n ≥ 1. For all U ∈ C and n ≥ 1,

∏T
n X(U)

is a group over X(U)0. In particular , over all section u ∈ X(U)0, we have a group denoted by

πn,U (X, u).

Definition 2.4.2. Let f : X→ Y morphism in 4opSh(S), then f is a weak equivalence if,

1. The morphism
∏T

0 f :
∏T

0 X→
∏T

0 Y is isomorphism;

2. For all n ≥ 1, the following commutative diagram is cartesian ;

∏T
n X

∏T
n f //

��

∏T
n Y

��
X0

f0 // Y0

If Φ : Sh(S) → Sets is a fiber functor on S. For all X ∈ 4opSh(S), there exist a bijection

Φ(
∏T

0 X)→ π0(Φ(X)). For all n ≥ 1, the map Φ(
∏T
n X)→ Φ(X0) can be identified with the map⊔

fΦ∈Φ(X0) πn(Φ(X, fΦ)→ Φ(X0). Using this description we have the following result:

Proposition 2.4.3. Let (Φi)i∈I a conservative family of fiber functors on the site S, and f :

X→ Y a morphism in 4opSh(S). Then the following conditions are equivalent :
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1. f is a simplicial weak equivalence.

2. For all i ∈ I, Φi(f) : Φi(X)→ Φi(Y) is a weak equivalence of simplicial sets.

Now if we have (f∗, f∗) : Sh(S) → Sh(S′), morphism of topos, S and S′ has enough points,

then for a fiber functor Φ of S, Φ ◦ f∗ is a fiber functor of S′. So if g : X → Y a morphism in

Sh(S′), such that g is an simplicial weak equivalence, then f∗(g) is a simplicial weak equivalence

too.

Definition 2.4.4. Cofs is the class of monomorphism in 4opSh(S), Ws is the class of simplicial

weak equivalences and Fibs is the class of morphism having right lifting property with repect to

Cofs
⋂
Ws. The classes Cofs and Fibs are called simplicial cofibration and simplicial fibration

respectively.

Theorem 2.4.5. (4opSh(S), Cofs, F ibs,Ws) is a closed model category.

Proof. [JR] page 36, theorem 3.7.

Remark 2. Since fibration in 4opSh(S) induces fibration in each fiber and the closed model

category structure on 4opSets is proper, we have that the previous model category structure on

4opSh(S) is proper.

If (f∗, f∗) : Sh(S) → Sh(S′) is a morphism of topos, then since f∗ is left exact, f∗ preserves

monomorphisms and also f∗ preserves weak equivalences. Hence (f∗, f∗) is an adjunction of

Quillen. Moreover we have a couple of adjoint functors (f∗, Rf∗) : Hos(S)→ Hos(S′).

2.4.2 Adjunction

Let S = (C, T ) is a site with sufficient points. Let Hom(−,−) is the internal hom on 4opSh(S)

for the monoidal structure − × −, that is the right adjoint bifunctor of − × −. We will denote

hom(−,−) as the global section of Hom(−,−).

Lemma 2.4.6. Let A→i B a cofibration and X→p Y a fibration in 4opSh(S);

1. The morphism Hom(B,X)→ Hom(A,X)×Hom(A,Y)Hom(B,Y) is a fibration which is trivial

if i or p is a simplicial weak equivalence.

2. The morphism hom(B,X)→ hom(A,X)×hom(A,Y) hom(B,Y) is a fibration which is trivial

if i or p is simplicial weak equivalence.

Proof. 1. If i : A→ B and j : X→ Y are two cofibration, then the morphism A×Y
⊔

A×X B×
X → B × Y is a cofibration which is trivial if i or j is a weak equivalence. Now by the

definition of Hom(−,−) and the right lifting property of trivial fibration and fibration we

have the result.

2. Let, for any U ∈ C, Γ : 4opSh(S) → 4opSets be the global section functor. We have

left adjoint 4opSets → 4opSh(S), called the constant sheaf functor. This constant sheaf

functor transforms cofibration (resp. trivial cofibration) in 4opSets to cofibration (resp.

trivial cofibration) in 4opSh(S). The global section functor sends fibration (resp. trivial
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fibration) in 4opSh(S) to fibration (resp. trivial fibration) in 4opSets. Hence by 1 we have

the result.

Lemma 2.4.7. Let X →f Y a morphism in 4opSh(S) with X and Y simplicially fibrant. The

following conditions are equivalent.

1. f is a homotopy equivalence.

2. f is a simplicial weak equivalence.

3. For U ∈ C, the morphism X(U)→ Y(U) is a weak equivalence of simplicial sets.

Proof. 1 implies 3 is evident from the previous result and the fact that X × 41 is the cylinder

object in 4opSh(S) for X. 1 and 2 are equivalent by the hypothesis of closed model category.

And from the definition 2.4.1 and 2.4.2 3 implies 2.

2.4.3 Homotopical classification of G-torsors

Let S = (C, T ) be a site and G be a sheaf of simplicial groups on S. A right (resp. left) action

of G on a simplicial sheaf X is a morphism a : X × G → X (resp a : G × X → X) such that the

diagram for associativity commutes and the action of identity of G on X fixes X.

Definition 2.4.8. A (left) action is called free if the morphism G × X → X × X of the form

(g, x) 7→ (a(g, x), x) is a monomorphism.

Definition 2.4.9. For any right action of G on X the quotient X/G is defined as the coequilizer

of the morphism pr1 and a from X×G→ X.

Definition 2.4.10. A principal G-bundle (a G-torsor) over X is a morphism Y → X together

with a free right action of G on Y over X such that the canonical morphism Y/G → X is an

isomorphism.

We will denote the set of isomorphism classes of principal G-bundles over X by P (X, G). This

set is pointed by the trivial G-bundle G×X→ X. If X′ → X is a morphism of simplicial sheaves

and Y→ X is a principal G-bundle over X then Y×X X′ has canonical structure of a principal G-

bundle over X′. This can be used to give a contravariant functor from 4opSh(S) to the category

of pointed sets by mapping X to P (X, G).

Definition 2.4.11. Let X be sheaf on S. E(X) is the simplicial sheaf of sets with n-th term Xn+1

(product of X n+ 1 times) and with faces (resp. degeneracies) induced by the partial projections

(resp. diagonals).

If G is a sheaf of simplcial groups on S, then E(G) becomes a simplicial sheaf of groups such

that E(G)0 = G and it has right and left action of G. The morphism E(G)→ B(G), which sends

(g0, g1, ..., gn) to (g0g
−1
1 , g1g

−1
2 , ..., gn−1g

−1
n , gn) induces an isomorphism E(G)/G ∼= B(G).

Definition 2.4.12. Let G be a simplicial sheaf of groups. The diagonal of the bisimplicial group

(n,m) 7→ E(Gn)m defines a sheaf of simplicial groups, which is denoted by E(G).
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Again we have a morphism from E(G) → B(G) such that E(G)/G ∼= B(G). This G torsor

E(G)→ B(G) is called the universal G-torsor over B(G).

Lemma 2.4.13. Let G be a simplicial sheaf of groups on S, and let E a G-torsor over a simplicial

sheaf X. Then there is a trivial local fibration Y→ X and a morphism Y→ B(G) such that the

pullback of E to Y is isomorphic to the pullback of E(G) to Y.

Proof. [MV] , page 128, lemma 1.12.

A morphism of simplcial sheaves f : X → Y is called a local fibration (resp. trivial local

fibration) if for any fiber functor Φ of S the corresponding morphisms of simplcial sets Φ(X) →
Φ(Y) is Kan fibration (resp. a Kan fibration and a weak equivalence).

The lemma above is the first step of classifying G-torsor over any simplcial set X using the

universalG-torsor E(G)→ B(G) as we can locally classifyG-torsor as a pullback of E(G)→ B(G)

by previous lemma.

Lemma 2.4.14. Suppose G has simplicial diension zero and f : X→ Y is a trivial local fibration.

Then the corresponding map P (Y, G)→ P (X, G) is a bijection.

Proof. [MV], page 129, lemma 1.13.

Lemma 2.4.15. If G has simplicial dimension zero, then for any simplical sheaf X, the map

P (X, G)→ P (X×41, G) is a bijection. In particular, the functor P (−, G) is homotopy invariant.

Proof. [MV], page 129, lemma 1.14.

Now let E ∈ P (X, G) , where G has simplcial dimensio zero, by 2.4.13 there exist a trivial local

fibration p : Y → X such that there exists a map f : Y → BG. But in the simplcial homotopy

category Hs(S), p is invertible so we get a map in Hs(S) given by f ◦ p−1 : X→ BG. So we get

a natural transformation (by 2.4.14) from P (X, G)→ HomHs(S)(X, BG).

Proposition 2.4.16. For any G of simplicial dimension zero the natural map P (X, G) →
HomHs(S)(X, BG) is a bijection. Suppose BG → BG is a trivial cofibration such that BG
is fibrant. Then there exists a principal G-bundle EG → BG such that for any X the map

Hom(X,BG) → P (X, G) given by f 7→ f∗(EG → BG) defines a bijection HomHs(S)(X, BG) ∼=
P (X, G)

Proof. [MV], page 130, proposition 1.15.

2.5 The A1-homotopy category of schemes over a base

Let S be Noetherien scheme. We denote by Hs((Sm/S)Nis) , the homotopy category associated

to the simplicial closed model category structure on 4opSh((Sm/S)Nis). We denote the final

object of the category Sm/S by • and ι : • → A1 is the zero section.

Definition 2.5.1. Let X be an object of 4opSh((Sm/S)Nis). X is called A1-local if for all

Y ∈ Sh((Sm/S)Nis), the map HomHs((Sm/S)Nis)(Y×A1,X)→ HomHs((Sm/S)Nis)(Y,X) induced

by ι is bijective.
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Definition 2.5.2. Let f : X → Y be a morphism in 4opSh((Sm/S)Nis), f is a A1-weak

equivalence if for all A1-local object Z of Hs((Sm/S)Nis), the map HomHs(Sm/S)Nis)(Y,Z) →
HomHs((Sm/S)Nis)(X,Z) is bijective.

It is clear that any simplicial weak equivalence is an A1 weak equivalence. Also for any

X ∈ 4opSh((Sm/S)Nis), the morphism X×A1 → X is an A1-weak equivalence.

Definition 2.5.3. We denote the class of A1-weak equivalences in4opSh(Sm/SNis) by WA1 , the

class of all monomorphisms in4opSh(Sm/SNis) by CofA1 and class of morphisms in4opSh(Sm/SNis)

having the right lifting property by CofA1
⋂
WA1 by FibA1 .

Lemma 2.5.4. Let X ∈ 4opSh((Sm/S)Nis). If X is simplicially fibrant, then the following are

equivalent

1. X is A1-local;

2. The simplicial fibration Hom(A1,X)→ X induced by ι is a simplicial weak equivalence;

3. For all U ∈ Sm/S, the fibration X(A1
U )→ X(U) is an weak equivalence.

Proof. 1. By lemma 2.4.6 Hom(A1,X) is simplicially fibrant. By lemma 2.4.7 2 and 3 are

equivalent.

2. Suppose 2, then Hom(A1,X) → Hom(•,X) is simplicial trivial fibration. By 2.4.6, for

all simplicially cofibrant object Y ∈ 4opSh((Sm/S)Nis), the morphism of simplicial sets

hom(Y,Hom(A1,X)) → hom(Y,Hom(•,X)) is a trivial fibration, which implies hom(Y ×
A1,X)→ hom(Y,X) is a trivial fibration. But then by taking π0 and 2.1.9HomHs((Sm/S)Nis)(Y×
A1,X)→ HomHs((Sm/S)Nis)(Y,X) is bijective, so X is A1-local.

3. Suppose 1, to show 3 by Yoneda’s lemma it is enough to show that for any U ∈ Sm/S,

the morphism of simplicially fibrant sets hom(U × A1,X) → hom(U,X) induced by ι is an

weak equivalence in 4opSets. By 2.1.9 it is enough to show that for any K ∈ 4opSets
the morphism hom(K,hom(Y × A1,X)) → hom(K,hom(Y,X), induces bijection on π0.

hom(K,hom(Y×A1,X))→ hom(K,hom(Y can be identified with the morphism hom(K×
Y×A1,X)→ hom(K ×Y,X), by the hyothesis and 2.1.9 this morphism gives bijection on

π0.

Lemma 2.5.5. Let f : X → Y a morphism in 4opSh(Sm/SNis). The following conditions are

equivalent

1. f is an A1-weak equivalence;

2. For all W ∈ Sh(Sm/SNis) simplicially fibrant and A1-local, the morphism of simplicial

sheaves Hom(Y,W )→ Hom(X,W ) is a simplicial weak equivalence;

3. For all W ∈ Sh(Sm/SNis) simplicially fibrant and A1-local, the morphism of simplicial sets

hom(Y,W )→ hom(X,W ) ia a weak equivalence.
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Proof. By 2.4.7 2 is equivalent to say that for all U ∈ Sm/S and simplicially fibrant A1-

local W ∈ 4opSh(Sm/SNis), the morphism of simplicial set Hom(Y,W )(U) → Hom(X,W )(U)

is a weak equivalence. By adjunction , it is equivalent to say that hom(Y,Hom(U,W )) →
hom(X,Hom(U,W )) is a weak equivalence.Moreover for W , simplicially fibrant and A1-local and

if W ′ ∈ 4opSh(Sm/SNis), then Hom(W ′,W ) is simplicially fibrant and A1-local. So showing 2 is

equivalent to show for all W ∈ 4opSh(Sm/SNis), simplicially fibrant and A1-local, the morphism

hom(Y,W ) → hom(X,W ) is a weak equivalence. So 2 and 3 are equivalent. By the same way

as in the proof of last lemma, we get 3 is equivalent to show that for all W ∈ 4opSh(Sm/SNis)

simplicially fibrant and A1-local, the morphism hom(Y,W )→ hom(X,W ) induces a bijection on

π0. So by 2.1.9 we get 3 and 1 are equivalent.

Lemma 2.5.6. 1. The product of two A1-weak equivalence is an A1-weak equivalence;

2. Direct sum of A1-weak equivalence is a A1-weak equivalence.

3. If i : A → B and j : C → D be two cofibration in 4opSh(Sm/SNis), then the morphism

A ×D
⊔
A×C B × C → B ×D is a cofibration which is an A1-weak equivalence if i or j is

a A1-weak equivalence.

Proof. 1. By 2.5.5, if f is an A1 weak equivalence then for any X ∈ 4opSh(Sm/SNis), f ×
idX is an A1-weak equivalnce. Since composition of A1 weak equivalences is an A1-weak

equivalence, we have the result.

2. Since product of simplicial weak equivalences of simplicially fibrant objects is weak equiva-

lence, by 2.5.5 we have the result.

3. By 1 and [JR] , page 43 lemma 3.28.

Definition 2.5.7. We denote the full subcategory of A1-local objects of Hs((Sm/S)Nis) by

Hs,A1−loc((Sm/S)Nis).

Theorem 2.5.8. The inclusion functor Hs,A1−loc((Sm/S)Nis) → Hs((Sm/S)Nis) has a left

adjoint LA1 .

Proof. By [JR], page 36, lemma 3.9, there exists a set Bof monomorphisms in 4opSh(Sm/SNis)

such that the simplicial fibrations are exactly the morphisms having the right lifting property with

respect to B. Let B′ be the set of morphisms of the form U×4n
⊔
U×∂4n A

1
U×∂4n → A1

U×4n,

induced by ι : • → A1, for n ≥ 0 and U ∈ Sm/S. By lemma 2.5.5, X ∈ 4opSh(Sm/SNis) is

A1-local and simplicially fibrant if and only if X → • has the right lifting property with respect

to B
⋃
B′. By 2.5.6 B

⋃
B′ ⊂ CofA1

⋂
WA1 .

By [JR], page 25, thm 2.28, there exists a functor φ : 4opSh(Sm/SNis)→4opSh(Sm/SNis),

with a natural transformation Id → φ, such that for X ∈ 4opSh(Sm/SNis), the morphism

X → φ(X) is a transfinite composition of direct images of the direct sums of B
⋃
B′ and such

that φ(X) → • has right lifting property with respect to the morphisms of B
⋃
B′. So for all

X ∈ 4opSh(Sm/SNis), φ(X) is simplicially fibrant and A1-local.
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By 2.5.6 and 2.5.5, direct image of direct sum of elements of B
⋃
B′ are inside CofA1

⋂
WA1 .

So by ([GJ], page 44, lemma 3.32) transfinite composition of trivial A1-cofibration is a trivial

A1-cofibration. So X → φ(X) is a trivial cofibration and an A1-weak equivalence. Moreover φ

transforms A1-weak equivalence to A1-weak equivalence. Since the image of φ is A1-local objects,

so φ transforms A1-weak equivalences to simplicial weak equivalence ( An A1-weak equivalence

between A1-local objects is a simplicial weak equivalence). Since simplicial weak equivalences are

A1-weak equivalence, φ induces a functor Hs((Sm/S)Nis → Hs,A1−loc((Sm/S)Nis), denoted by

LA1 .

We have the inclusion functor i : Hs,A1−loc((Sm/S)Nis)→ Hs((Sm/S)Nis). Using this func-

tor we can define a morphism of functors IdHs((Sm/S)Nis) → i◦LA1 . So we have a canonical mor-

phism for X ∈ Hs((Sm/S)Nis) and Y ∈ Hs,A1−loc((Sm/S)Nis): HomHs,A1−loc((Sm/S)Nis)(LA1X,Y)→
HomHs((Sm/S)Nis)(X, iY). This morphism is bijective since X→ φ(X) is an A1-weak equivalence

for all X ∈ 4opSh(Sm/SNis). So LA1 is adjoint to the functor i : Hs,A1−loc((Sm/S)Nis) →
Hs((Sm/S)Nis).

Theorem 2.5.9. Let S be a Noetherian scheme. The category 4opSh(Sm/SNis) with morphisms

(CofA1 , F ibA1 ,WA1) forms a closed model category. Moreover this closed model category structure

is proper. The homotopy category of this closed model category is denoted by H(S) and it is called

the homotopy category of S.

Proof. [JR], page 47, theorem 3.40.

2.5.1 Pointed category and model category structure

A pointed category is a category is a category which has same initial and final object . Given

a category C which has final object •, we denote C• the comma category (• ↓ C). We have a

basepoint forgetful functor U : C• → C. If C has finite direct sums then this functor has a left

adjoint −+ : C → C• which associates X
⊔
• to every X ∈ C.

Definition 2.5.10. Let C be closed model category. A morphism in C• is a weak equivalence

(resp. cofibration, resp. a fibration) if and only if U(f) is a weak equivalence (resp. a cofibration

, resp. a fibration) in C.

Proposition 2.5.11. If C is a closed model category, then C• is also a closed model category.

Moreover, if C is proper then C• is proper too. Moreover

Proof. [JR], page 52, proposition 3.56.

We can apply the proposition to the closed model categories 4opSets, Sh(Sm/SNis) and

4opSh(Sm/SNis) (for both simplicial and A1-local structure). We denote Htop
• as the homo-

topy category of pointed simplicial sets , Hos,•(Sm/SNis) as the homotopy category of pointed

simplicial sets and H•(S) as the pointed homopoty category of S-schemes.

Definition 2.5.12. Let C be a closed model category (left proper). If A →i X is a cofibration

27



in C, we define a cofibrant object X/A of C• by the following cocartesian diagram

A
i //

��

X

��
• // X/A

Let Cbe a closed model category. For all objects X and Y of C•, let X ∨ Y denote the direct

sum in C•. We have morphism X ∨ Y → X × Y , so we have a cocartesian diagram

X ∨ Y //

��

X × Y

��
• // X ∧ Y

Lemma 2.5.13. If, in C, for all object X, the functor −×X commutes with all finite inductive

limits , then the bifunctor −∧− defines a symmetric monoidal category structure on C•, and the

neutral object is S0
s := •+.

Proof. [JR] , page 53, lemma 3.58.

Definition 2.5.14. For all n ∈ N, Sns = (S1
s )n, where S1

s = 41/∂41 ∈ 4opSets•.

Lemma 2.5.15. For all U ∈ Sm/S, the functor 4opSh(Sm/SNis)• → 4opSets• which asso-

ciates F (U) to F has a right adjoint K 7→ K ∧ U+.

Proof. [JR], page 53, lemma 3.62.
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Chapter 3

Unramified sheaves and strongly

A1-invariance of unramified

sheaves

3.1 Main Idea

Let Fk be the category of finite type separable field extension of k. By a discrete valuation v on

F ∈ Fk, we mean a discrete valuation coming from a codimension 1 point in a smooth model for

F , Ov ⊂ F will be its discrete valuation ring, mv ⊂ Ov its maximal ideal and κ(v) its residue

field.

We will denote by ˜Smk the category of smooth k-schemes where the morphisms are only

smooth k morphisms. If X is a smooth finite type seprated k-scheme we denote Xn by the set of

all codimension n points of X . In this chapter we will define unramified presheaf (resp. sheaf of

sets) 3.2.1.

Then it will turn out that giving an unramified sheaf of sets on Smk is same as giving for all

X ∈ Smk irreducible with function field F and for any codimension one point x ∈ X, two sets and

an inclusion S(Ox,X) ⊂ S(F ) (which is related to the third condition of unramified sheaves, also

a specialisation map sv : S((Ox,X)→ S(κ(v)) (related to closed immersion of codimension one).

This data will satisfy some axioms (see 3.2.8 and 3.2.6), the axioms A1 is related to the Nisnevich

square property, A2 is related to the second condition of unramified sheaves. A4 is to inductively

factorise any codimension d > 0 morphism such that the composition of the structural sheaf map

is independent of of the factorisation and A3 captures the functorial propeperty of sheaf of sets

for closed immersion .

Atlast we will show the following lemma, which will be used in later sections to prove πA
1

1 is

strongly A1-invariant.

Result 1. 1. Let S be an unramified sheaf of sets on ˜Smk . Then S is A1-invariant if and

only if it satisfies the following : For any k -smooth local ring B (or localisation of a smooth

scheme at codimension 1 point) of dimension ≤ 1 the canonical map S(B) → S(A1
B) is
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bijective .

2. Let S be an unramified sheaf of sets on Smk . Then S is A1-invariant if and only if it

satisfies the following : For any F ∈ Fk the canonical map S(F )→ S(A1
F ) is bijective.

3.2 Unramified sheaves and A1-invariance

Definition 3.2.1. An unramified presheaf of sets S on Smk is a presheaf of sets such that the

following holds

1. for any X ∈ Smk with irreducible components ᾱ , α ∈ X0 the map S(X)→ Πα∈X0S(ᾱ) is

a bijection. Where ᾱ is the closure of the point α inside X.

2. for any X ∈ Smk and for any open subshceme U of X the map S(X)→ S(U) is injective if

U is dense in X.

3. for anyX ∈ Smk irreducible with function filed F, The injective map S(X)→ ∩x∈X1S(OX,x)

is a bijection. The intersection is computed inside S(F).

Lemma 3.2.2. An unramified presheaf S (on Smk ) is automatically a sheaf of sets in Zariski

topology.

Proof. Let U = {Ui → U} be a covering of an irreducible scheme X ∈ Smk(by axiom 1 it is

enough to show for irreducible schemes). By 3 S(X) → ∩x∈X1S(OX,x) is a bijection and we

have to show that ∩x∈X1S(OX,x) → Πi(∩x∈U1
i
S(OUi,x)) →→ Πij(∩x∈U1

ij
S(OUij ,x)) is exact(where

Uij = Ui ×X Uj). The presheaf is separated comes from axiom 2. Note that x ∈ X1 iff such

that x ∈ U1
i for some Ui iff x ∈ U1

ij for some j. And moreover OX,x = OUi,x = OUij,x. Now the

exactness follows easily.

Lemma 3.2.3. Suppose S is an unramified presheaf, condition 3 holds for X (localisation of a

smooth k-scheme) with function field F .

Proof. For any irreducible k-smooth scheme X with generic point η(corresponding to the function

field F ) , if s is an element of S(F ) , U be the maximal open subset of X to which s extends,

the closed set Z = X − U is purely of codimension 1, which means that if x is the generic point

of a irreducible component of Z, then x is a codimension one point in X. Indeed if codimension

of the generic point x of some irreducible component of Z is greater than 1, then there exist

a codimension 1 point y ∈ U and x ∈ X such that x ∈ ȳ . There exist an open subscheme

U ′ containing both y and x and such that U ∩ U ′ contains all the codimension one point(by

noetherian property of Z and from the fact that x̄ is an irreducible component) of U ′ hence s can

be extended to U ∪ U ′ using (3) which gives a contradiction as U is maximal. Now let X be a

smooth scheme with generic point η with field of function F , x a point in X , s an element of

S(F ), we assume that for any codimension one point y of Spec OX,x (i.e. a codimension one point

y of X such that x belongs to the closure of y) s extends to an element in S(OX,y) , we want to

prove that s extends to an element of S(OX,x) . Let U be the maximal open subset of X to which

s extends. Let Z = X −U . We have shown that the generic points of the irreducible components
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of Z are of codimension one in X. If z is such a generic point of some irreducible component

of Z of codimension 1 in X, then z does not belong to SpecOX,x by hypothesis(the maximality

condition of U), so the closure of z does not contain x. Z is the union of the closure of its maximal

points, so x does not belong to Z , which means that s extends to an open neighbourhood of x

and thus is an element of S(OX,x).

Lemma 3.2.4. Let S be the sheaf of sets in Zariski topology on Smk satisfying properties 1 and

2 of the previous definition then it is unramified iff , for any X ∈ Smk and any open subscheme

U of X the restriction map S(X)→ S(U) is bijective if X −U is everywhere of codimension > 1

in X .

Proof. If S is unramified then take any open subscheme U of a irreducible scheme X such that

X − U is everywhere of codimension > 1 , this implies that all the codimension one points of

X are inside U and by the property three of unramified sheaves it follows that S(X) → S(U) is

bijection .

For the converse for any irreducible scheme X , let s ∈ ∩x∈X1S(OX,x) . There exists a maximal

open set U ⊂ X such that s is induced by some element in S(U) . Hence by the property of this

open set we have ∀x ∈ X1 , x ∈ U . So the closed set X − U is of codimension ≥ 2 . So by the

bijection between S(X)→ S(U) we get s ∈ S(X) .

Lemma 3.2.5. Any strictly A1-invariant sheaf of abelian groups M on Smk is unramified.

Proof. [MO2] page 67 lemma 6.4.11 we have M is pure ( see [MO2] page 66 definition 6.4.9). So

for X ∈ Smk we have isomorphism Hn
Zar(X;M) = Hn

Nis(X;M) and if U is a dense open set of X

(so codim(X − U) ≥ 1) ,M(X) = H0
Zar(X;M) = H0

Nis(X;M) → H0
Nis(U ;M) = H0

Zar(U ;M) =

M(U) is injective.Which proves the property 2 of unramified sheaves .

Suppose M satisfies property 1 , suppose U be any open subscheme of X ∈ Smk such

that codim(X − U) ≥ 2 , we have M(X) = H0
Zar(X;M) = H0

Nis(X;M) → H0
Nis(U ;M) =

H0
Zar(U ;M) = M(U) is bijective , so by previous lemma M will satisfy property 3 of unramified

sheaves.

To show the property 1 it is enough to show that X ∈ Smk the irreducible components of

X are same as the connected components of X. (irreducible components are connected and

for smooth scheme X the local rings are regular,hence integral, so if X is connected then it is

irreducible).

Base Change Let K ∈ Fk and π : Spec(K)→ Spec(k) be the structural morphism , this gives

a morphism between the sites π : SmK → Smk, let S be a sheaf of sets on Smk then we can

pullback S to the sheaf S |K := π∗S on SmK . For finite type separable extension F of K we

can show that S(F ) = π∗S(F ) . π∗S is a sheaf in Nisnevich topology so it is a sheaf in Zariski

topology and it satisfies property one and two of uramified sheaves , and it satisfies the condition

of the lemma 3.2.4 so it satisfies 3 too.

Definition 3.2.6. An unramified F̃k set consists of
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(D1) A functor S : Fk −→ Set ;

(D2) For any F ∈ Fk and any discrete valuation v on F , a subset S(Ov) ⊂ S(F ) ;

The previous data are moreover supposed to satisfy the following axioms

(A1) If i : E ⊂ F is a separable extension in Fk, and v is a discrete valuation on F which restricts

to a discrete valuation w on E with ramification index 1 and κ(v) is separable over κ(w),

then S(i) maps S(Ow) into S(Ov) and moreover if the induced extension ĩ : κ(w)→ κ(v) is

an isomorphism , then the following square of sets is cartesian :

S(Ow) //

��

S(Ov)

��
S(E) // S(F )

(A2) Let X ∈ Smk be irreducible with function field F. If x ∈ S(F ) , then x lies in all but a finite

number of S(Ox)’s , where x runs over the set X1 of points of codimension one of X.

Theorem 3.2.7. The category of unramified sheaves on ˜Sm/k is equivalent to the category of

unramified F̃k-sets .

Proof. There exists a functor from the category of unramified sheaf of sets on ˜Smk to the category

of unramified F̃k sets. Indeed given an unramified sheaf of sets S on ˜Smk we can take a smooth

model for any F ∈ F̃k and then evaluate S at F . For any discrete valuation v on F , there exists

X ∈ Smk irreducible with function field F and the discrete valuation comes from a codimension

1 point of X . Now using property 2 of unramified set we get S(Ov) ⊂ S(F ) . If E ⊂ F ,where

E,F ∈ Fk and moreover F is finite type separable extension over E , there exists X,Y ∈ Smk

irreducible with function field E and F respectively and f : Y → X smooth which maps the

generic point to the generic point . So we get a map from S(f) : S(X) → S(Y ) which induces

the map S(f) : S(E)→ S(F ).

Axiom (A1) can be checked using smooth models over k for Spec(F ) and Spec(Ov). We can

have smooth models X and Y for Spec(F ) and Spec(E) respectively , such that there exists

a smooth morphism f : X → Y which maps the generic point to the generic point and the

codimension one point corresponding to v to the codimension one point corresponding to w . So

we have the following diagram

S(U) //

��

S(f−1(U))

��
S(E) // S(F )

Where U is any open subscheme of X containing w. After taking the colimit of this diagram

we get that S(i) maps S(Ow) to S(Ov). Now the following diagram is an elementary distinguished

square over Spec(Ow).
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Spec(F ) //

��

Spec(Ov)

��
Spec(E) // Spec(Ow)

which is the colimit of the diagram

U ×X V //

��

V

p

��
U

j // X

where V is smooth model for Spec(F ) and X is smooth model for Spec(E). Now using the

Theorem 2.3.18 we get A1 .

For axiom (A2) , firstly for any irreducible scheme X, by the noetherian property the com-

pliment of any open subscheme U of X contains only finitely many x ∈ X1. By definition any

f ∈ S(F ) comes from an element f ∈ S(U) where U ∈ Smk and it is an open subscheme of

X. So any f ∈ S(F ) lies in all the S(Ox) for x ∈ X1 and x ∈ U , but there are finitely many

x ∈ X1, x /∈ U .

Now let us define a functor form the category of unramified F̃k sets to the category of unrami-

fied sheaves on ˜Smk. First given an unramified F̃k set S, and X ∈ Smk irreducible with function

field F , define S(X) ⊂ S(F ) as ∩x∈X1S(OX,x) ⊂ S(F ) . It can be extended to any smooth scheme

such that the first property of unramified sheaves is satisfied . Now given a smooth morphism

f : Y → X we have to define a map S(f) : S(X)→ S(Y ) . We can assume (by the first property

of unramified sheaves and the fact that image of a irreducible set is irreducible) that X and Y are

irreducible with function field E and F respectively. Moreover we can assume that f is dominant

(since image of f is open) . If x ∈ X1 then f−1(x) has finitely many irreducible components and

the generic points of those irreducible components are codimension 1 points in Y . Now using

A1, field inclusion E ⊂ F gives the desired map . The fact that this gives a sheaf of sets in

Nisnevich topology comes from axiom ( A1) and 2.3.18 of Nisnevich sheaves . It is unramified by

construction and A2 . And it is the inverse to the restriction functor .

So from now on if S is an unramified sheaf of sets over F̃k we will denote the associated sheaf

of sets over ˜Smk by S also.

Definition 3.2.8. An unramified Fk-set S is an unramified F̃k set together with the following

additional data :

(D3) For any F ∈ Fk and any discrete valuation v on F such that the residue field κ(v) is

separable over k , a map sv : S(Ov) → S(κ(v)), called the specialization map associated to v.

And this data satisfies the additional conditions

(A3) (a) If i : E ⊂ F is an extension in Fk, and v is a discrete valuation on F which restricts to

a discrete valuation w on E with ramification index 1, then S(i) maps S(Ow) to S(Ov)

and if the two residue fields are separable over k the following diagram is commutative
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:

S(Ow) //

��

S(Ov)

��
S(κ(w)) // S(κ(v))

(b) If i : E ⊂ F is an extension in Fk, and v is a discrete valuation on F which restricts to

0 on E then the map S(i) : S(E)→ S(F ) has its image contained in S(Ov) .

(c) If moreover κ(v) is separable over k, then if we let j : E ⊂ κ then the composition

S(E)→ S(Ov)
s(v)→ S(κ(v)) is equal to S(j).

(A4) (a) For any X ∈ Smk, and any point z ∈ X2 of codimension 2, and for any point y0 ∈ X1

such that z ∈ ȳ0 and such that ȳ0 ∈ Smk, the map sy0 : S(Oy0) → S(κ(y0)) maps

∩y∈(Xz)1S(Oy) into S(Oȳ0,z) ⊂ S(κ(y0)). Where Xz is X localised at z.

(b) If κ(z) is seprable over k then the composition

∩y∈X1S(Oy)→ S(Oȳ0,z)→ S(κ(z))

does not depend on the choice of the point y0 .

Theorem 3.2.9. The category of unramified sheaf of sets on Smk is equivalent to the category

of unramified Fk sets .

Proof. Let us define a functor from unramified sheaf of sets on Smk to the category of unramified

Fk sets . By the previous theorem we have an unramified F̃k set constructed from an unramified

sheaf of sets S on Smk . If v is a discrete valuation on F ∈ Fk with residue filed κ(v) separable

over k, then by choosing smooth model for the closed immersion Spec(κ(v))→ Spec(Ov) will give

the specialisation map sv. We have a smooth X and x a codimension one point with Ov = OX,x,

k(v) the residue field . Let Z be the closure of x in X . We may assume that Z is smooth (in

(D3), we assume that k(v) is separable, so there is a dense open subset of Z that is smooth over

k . Since Ov is the inductive limit of the ring of functions of U where U vary in the ordered set of

(affine) neighbourhoods of x in X . For any such U , there is a map of smooth schemes Z∩U → U ,

and so, the original data gives a map S(U) → S(Z ∩ U) . Now, we can take the inductive limit

of these maps where U goes through the neighbourhoods of x in X . By construction, we can

map S(Ov)→ S(k(v)) . [k(v) is the function field of Z]. To show that it satisfies A3 (a) We can

assume there exist X and Y smooth irreducible schemes with function field F and E respectively,

which has codimension one points v and w respectively, and a smooth map f : X → Y such that

f maps the generic point to the generic point and v to w, moreover take the closed subscheme

generated by v and w. So the composite map from v̄ → X → Y factors through w̄. Now the

commutativity of the squae in A3 (a) is same as the commutativity of the following square

v̄ //

��

X

��
w̄ // Y

To show A3 (b) and (c), actually we can assume that f maps v to the generic point of Y .

34



Now rest is to show A4 (a). First of all notice that for X as in A4 we have a commutative

diagram

ȳ0 ∩ U //

��

U

��
ȳ0 // X

This gives the following commutative diagram

S(X) //

��

S(Oy0)

��
S(ȳ0) // S(κ(y0))

We can thus replace X by any open subscheme U containig z, and ȳ0 by U ∩ ȳ0. We get

S(Oz) //

��

S(Oy0)

��
S(Oȳ0,z) // S(κ(y0))

which proves A4 a. Again notice that we have the following commutative diagram

z̄ ∩ U //

��

ȳ0 ∩ U //

��

U

��
z̄ // ȳ0 // X

and from this we get a commutaive diagram

S(X) //

��

S(ȳ0) //

��

S(z̄)

��
S(U) // S(ȳ0 ∩ U) // S(κ(z))

since every open set containing z contains all the codimension one point y such that z ∈ ȳ
and for any such y and U open such that z ∈ U we have S(U)→ S(ȳ0 ∩U) is the composition of

the maps S(U)→ S(ȳ ∩ U)→ S(ȳ0 ∩ U). So now the colimit over the open sets V (replacing X

by V in the previous diagram) containing z gives A4(b).

Now to finish the proof of our theorem it is sufficient to prove the following.

Lemma 3.2.10. Given an unramified Fk set S , there is a unique way to extend the unramified

sheaf of sets S : ( ˜Smk)op → Set to sheaf S : (Smk)op → Set , such that for any discrete valuation

v on F ∈ Fk with separable residue field , the map S(Ov)→ S(κ(v)) induced by the sheaf structure

map is the specialization map sv : S(Ov)→ S(κ(v)) . This sheaf is automatically unramified .

Proof. Let i : Y → X be a closed immersion of codimension one in Smk. To define a map

S(i) : S(X) → S(Y ) we can assume that X and Y is irreducible. Indeed , if Y = qαYα be the

irreducible decomposition of Y then by property 1 of unramified sheaves S(Y ) = ΠαS(Yα). Hence

the map s(i) should be product of s(iα), so Y can be chosen as irreducible, similarly using the

fact that image of irreducible set is irreducible we can assume that X is irreducible too.
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We can show that there exists a (unique) map s(i) : S(X)→ S(Y ) which makes the following

diagram commutative

S(X)
s(i)

//

��

S(Y )

��
S(OX,y)

sy
// S(κ(y))

where y is the generic point of Y . If such map exists then by the commutativity of the

previous diagram and the property 3 of unramified sheaves , sy will map S(X) inside S(OY,z) for

all z ∈ Y 1 . So to get the above map it is sufficient to prove that for any z ∈ Y 1, the image of

S(X) through sy is contained in S(OY,z). Observe that z has codimension 2 in X . Hence by

axiom (A4 a) sy maps ∩x∈X1S(OX,x) ⊂ ∩y∈(Xz)1S(Oy) into S(OY,z).

Lemma 3.2.11. Let i : Z → X be a closed immersion in Smk of codimension d > 0 . Assume

that there exists a factorisation

Z
j1→ Y1

j2→ Y2 → ....
jd→ Yd = X

of i into a composition of codimension 1 closed immersions, with Yi closed subschemes of X each

of which is smooth over k. Then the composition

S(X)
s(jd)→ ...→ S(Y2)

s(j2)→ S(Y1)
s(j1)→ S(Z)

does not depend on the choice of the above factorisation of i. We denote this composition by S(i).

Proof. Proof is by induction (induction on d) . For d = 1 there is nothing to prove . Assume

d > 2 . By the arguement of previous lemma we can reduce it to the case where Z is irreducible

with generic point z . We have to show that the composition does not depend on the flag

Z
j1→ Y1

j2→ Y2 → ....
jd→ Yd = X

. First of all we can assume X is irreducible and using the commutativity of the next diagram

we can substitute X by any open subset Ω containing z.

S(X) //

��

S(Y1) //

��

. . . //

��

S(Z)

��
S(Ω) // S(Y1 ∩ Ω) // . . . // S(Z ∩ Ω)

(3.1)

That is to show that the composition is irrespective of the flag

Z ∩ Ω
j1→ Y1 ∩ ω

j2→ Y2 ∩ Ω→ ....
jd→ Yd = X ∩ Ω

. Now when d = 2 This foillows from axiom A4. As κ(z) is separable and over k, so the

composition ∩y∈X1S(Oy)→ S(Oȳ0,z)→ S(κ(z)) doesn’t depend on the choice of y0.

Now for the general case OX,z is regular local ring of dimension d. So by Nakayamas lemma

there exists an open neighborhood Ω of z in X and a sequence of elements (x1, x2, ...., xd) ∈ O(Ω)
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which generates the maximal ideal mv of A := OX,z and such that the flag Spec(A/(x1, ...., xd))→
Spec(A/(x2, ...., xd)→ ......Spec(A/(xd))→ Spec(A) is the induced flag :

Z ∩ Ω
j1→ Y1 ∩ ω

j2→ Y2 ∩ Ω→ ....
jd→ Yd = X ∩ Ω

Thus we have to show that given z ∈ Xd, with separable residue field, in a smooth k-scheme X,

and with A = OX,z, and given a sequence (x1, ....., xd) whose associated flag of closed subschemes

of Spec(A) consists of smooth k-schemes, the composition S(SpecA) → S(Spec(A/(xd))) →
....S(Spec(A/(x2, ......., xd))→ S(κ) doesn’t depend on the choice of (x1, x2, ......, xd).

As κ(v) is separable over k , the condition of smoothness on the members of the associated

flag to the sequence (x1, ...., xd) is equivalent to the fact that the family (x1, ...., xd) forms a basis

of the κ(v) vector space mv/(mv)2. Now if, M ∈ GLd(A), then the sequence M.xi satisfies this

condition. If we permute xi and xi+1 then from the case of d = 2 the composition S(A)→ S(κ(v))

remains same after the permutation. So it shows that any permutation of (x1, ...., xd) keeps the

composition invariant.

If (x̃1, ...., x̃d) is another sequence in A satisfying the same assumption. Then x̃i can be

written as linear combination in xj . We get a matrix M ∈Md(A) with x̃i = Mxj . This matrix

reduces in Md(κ) to an invertible matrix , thus M is itself invertible. If we multiply an elemnt

xi in a sequence (x1, ...., xd) by a unit of A then it won’t change the flag so the composition

S(A) → S(κ(v)) remains unchanged . So we can assume det(M) = 1 . For a local ring A the

group SLd(A) is the group Ed(A) of elementary matrices in A ( [KNUS] chapter VI ,corollary

1.5.3) . So M can be written as a product of elementary matrices in Md(A) .

The composite map doesn’t depend on the permutation of (x1, ...., xd) , So we have to show

that given a seqeunce (x1, ...., xd) and a ∈ A, the regular sequence (x1 + ax2, ...., xd) induces the

same compostion S(A)→ S(κ(v)) as (x1, ...., xd) . But this induces same flag .

Let i : Z → X be a closed immersion in Smk . So X can be covered by Ui’s such that

Z ∩ Ui → Ui admits a factorization as in the previous lemma. Thus for each such Ui we get a

canonical map sUi : S(Ui) → S(Z ∩ Ui). But then we can apply the lemma to the intersection

Ui ∩Uj , with Uj another open set for which the factorization exists, so sUi are compatible, hence

defines a canonnical map s(i) : S(X)→ S(Z).

If f : Y → X be any morphism between smooth k-schemes. Then f is the composition

Y ↪→ Y ×k X → X of the closed immersion graph of f , i.e Γf : Y ↪→ Y ×k X and the smooth

projection pX : Y ×k X → X . So we can now define s(f) : =

S(X)
s(pX)→ S(Y ×k X)

Γf→ S(Y )

.

If we have a smooth morphism π : X ′ → X and closed immersion i : Z → X in Smk, Let

pX′ : Z ×X X ′ → X ′ and pZ : Z ×X X ′ → Z. Then the following diagram is commutative

S(X)
s(π)

//

s(i)

��

S(X ′)

s(pX′ )

��
S(Z)

s(pZ)
// S(Z ×X X ′)
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(We can reduce to the case using the proof of previous lemma that the closed immersion is of

codimension 1 and both X and Z are irreducible . But then the commutativity of the diagram

follows from A3 (a) ).

Let Z → Y → X be two composable morphism we get the following commutative diagram

Z //

��

Z ×k Y //

��

Z ×k Y ×k X

��
Z //

��

Y //

��

Y ×k X

��
Z // Y // X

(3.2)

Then applying S and s gives a commutative diagram . Restriction of this presheaf to ˜Smk gives

an unramified sheaf hence it is itself unramified sheaf on Smk .

Corollary 3.2.12. Let S and G be sheaves of sets on Smk , with S unramified and G satisfying

conditions 1 and 2 of unramified presheaves . Then to give a morphism of sheaves φ : G → S is

equivalent to give a natural transformation ϕ : G |Fk→ S |Fk such that :

1. for any discrete valuation v on F ∈ Fk , the image of G(Ov) ⊂ G(F ) through ϕ is contained

inside S(Ov) ⊂ S(F ) .

2. If moreover the residue field of v is separable over k , then the induced square commutes :

G(Ov) sv
//

ϕ

��

G(κ(v))

ϕ

��
S(Ov) // S(κ(v))

Proof. If such a φ exist then we can easily construct ϕ and show that it satisfies 1 and 2 (by

elemntary properties of sheaves) .

Suppose ϕ exist and satisfies 1 and 2 then for any X ∈ Smk irreducible with function field F

we can define a morphism G(X)→ S(X) using property 1 , And if Z → X is a codimension one

closed immersion then porperty 2 implies that the following square is commutaive

G(X) //

��

G(Z)

��
S(X) // S(Z)

Now following the proof of the previous two lemmas there exists a morphism of sheaves since

S is unramified .

Lemma 3.2.13. 1. Let S be an unramified sheaf of sets on ˜Smk . Then S is A1-invariant if

and only if it satisfies the following : For any k -smooth local ring B (or localisation of a

smooth scheme at codimension 1 point) of dimension ≤ 1 the canonical map S(B)→ S(A1
B)

is bijective .
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2. Let S be an unramified sheaf of sets on Smk . Then S is A1-invariant if and only if it

satisfies the following : For any F ∈ Fk the canonical map S(F )→ S(A1
F ) is bijective .

Proof. 1. If S is A1-invariant then for any smooth k-scheme X , we have bijection S(X) →
S(A1

X) hence the claim follows . To show the opposite let X ∈ Smk irreducible with function

field F . We have the following commutative square :

S(X) //

��

S(A1
X)

��
S(F ) // S(F (T ))

Each map is injective in this square . Now S(A1
X)→ S(F (T )) factors as S(A1

X)→ S(A1
F )→

S(F (T )). By assumption S(F ) = S(A1
F ) , so S(A1

X) ⊂ S(F ) . It is sufficient to show that

for any x ∈ X1 there is an inclusion S(A1
X) ⊂ S(OX,x) ⊂ S(F ) . But S(A1

X) ⊂ S(A1
OX,x

)

and by our assumption S(OX,x) = S(A1
OX,x

) . So S is A1-invariant .

2. Again by the property of A1-invariant sheaves it is clear that S(F )→ S(A1
F ) (since for any

irredicible scheme X with function field F we have S(X)→ S(A1
X) is bijective) is bijective.

To show the converse, let X ∈ Smk irreducible with function field F . We have the following

commutative square

S(A1
X) //

��

S(A1
F )

��
S(X) // S(F )

Now the upper horizontal, right vertical and the lower horizontal maps are injective hence

the left vertical map is also injective and since X is a retract of A1
X we have the left vertical

map is surjective . Which gives the proof .
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Chapter 4

Unramified Sheaves of groups and

strong A1-invariance

4.1 Main idea

Let G be an unramified sheaf of groups on Smk (or ˜Smk). For any discrete valuation v on

F ∈ Fk let H1
v (Ov;G) := G(F )/G(Ov) . For y a point of codimension 1 in X ∈ Smk , we

set H1
y (X;G) = H1

y (OX,y;G) . By the axiom A2 of unramified sets on Fk if X is irreducible

with function field F the induced action of G(F ) on Πy∈X1H1
y (X;G) preserves the weak product

Π′y∈X1H1
y (X;G) ⊂ Πy∈X1H1

y (X;G) and by definition the isotropy subgroup of the action of G(F )

on the basepoint of Πy∈X1H1
y (X;G) is exactly G(X) =

⋂
y∈X1 G(OX,y) . This shows that the

following sequence

1→ G(X)→ G(F ) =⇒ Π′y∈X1H1
y (X;G)

is exact (in the sense of definition 4.2.3). The main idea in this section is to understand this exact

sequence when G is A1-invariant. We will give necessary and sufficient conditions for a sheaf of

A1-invariant groups G to be strongly A1-invariant.

4.2 The conditions of strongly A1-invariance

Definition 4.2.1. For any point z of codimension 2 in smooth k-scheme X, we denote H2
z (X;G)

the orbit set of Π′y∈X1
z
H1
y (X;G) under the left action of G(F ) , where F ∈ Fk denotes the field

of functions of Xz (where Xz is the localisation of X at the point z).

If X is irreducible smooth k-scheme with function field F we have a G(F )-equivariant map

Π′y∈X1H1
y (X;G)→ Π′y∈X1

z
H1
y (X;G)→ H2

z (X;G). So we can define a G(F )-equivariant map

Π′y∈X1H1
y (X;G)→ Π′z∈X2H2

z (X;G) (4.1)

But it is not clear that the image is inside Π′z∈X2H2
z (X;G) . So we will use another axiom

depending on G and an integer d
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(A2’) For any smooth k-scheme , irreducible of dimension d , the image of the boundary map 4.1

is contained in the weak product Π′z∈X2H2
z (X;G) .

If we assume that G satisfies (A2′) , for X ∈ Smk irreducible with function field F , we get a

complex C∗(X;G) of groups , action and pointed sets :

1→ G(X)→ G(F ) =⇒ Π′y∈X1H1
y (X;G)→ Πz∈X2H2

z (X;G)

If X ∈ Smk , define :

G0(X) := Π′x∈X0G(κ(x)) ;

G1(X) := Π′y∈X1H1
y (X;G) ;

G2(X) := Π′z∈X2H2
z (X;G) .

Lemma 4.2.2. The correspondence X 7→ Gi(X) , i ≤ 2 can be extended to presheaf of sets on
˜Smk. Moreover G0 is an unramified sheaf in Nisnevich topology.

Proof. If f : X → Y is a smooth dominant morphism between irreducible smooth k-schemes .

By the same reasoning as in theorem 3.2.7 we can show that it is sufficient to define the map

Gi(f) : Gi(Y )→ Gi(X) . If x ∈ Y d , then the generic points of f−1(x) are in Xd . This gives the

desired maps which makes X 7→ Gi(X) presheaves (using the A1 axiom of unramified F̃k sets).

G0 is a Nisnevich sheaf follows from elementary distinguish squares. And it is unramified from

the definition of G0.

Definition 4.2.3. Let 1→ H ⊂ G⇒ E → F be a sequence with G a group acting on the set E

which is pointed as a set , with H ∈ G a subgroup and E → F a G-equivariant map of sets , with

F endowed with the trivial action . This sequence is exact if the isotropy subgroup of the base

point of E is H and if the kernel of the pointed map E → F is equal o the orbit under G of the

base point of E . This sequence is called exact in the strong sense if moreover the map E → F

induces an injection into F of the left quotient set G \ E ⊂ F .

Let C∗(X;G) is the complex

1→ G(X)→ G0(X) =⇒ G1(X)→ G2(X)

If X is localisation of a smooth scheme at point of codimension ≤ 2 , then X has atmost one

codimension 2 point z, now G2(X) = H2
z (X;G), so G1(X)→ G2(X) is surjective, the exactness

at G0(X), G1(X) and G(X) follows directly from our previous discussions. So C∗(X;G) is exact

in the strong sense.

Let Z1(−;G) ⊂ G1 be the sheaf theoretic orbit of the base point under the action of G0 in the

Zariski topology on ˜Smk . So we will have an exact sequence of sheaves on ˜Smk in the Zariski

topology

1→ G ⊂ G0 ⇒ Z1(−;G)→ ∗ (the exact sequenceof sheaves comes from the local exactness ).

G0 is flasque, so H1
Zar(X;G0) is trivial. So for any X ∈ Smk we have an exact sequence of

groups and pointed sets in the strong sense

1→ G(X) ⊂ G0(X)⇒ Z1(X;G)→ H1
Zar(X;G)→ ∗ .
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Remark 3. If X is a localisation of smooth k-scheme at a point of codimension ≤ 1, Then

Z1(X;G) = G1(X) and hence H1
Zar(X;G) = G0(X) \ G1(X).We can generalise the result for

X smooth of dimension 1 or any open subset of dimension ≤ 1 of the localisation of a smooth

scheme X (since G1(X) is a sheaf in Zariski topology and for localisaion at the codimension ≤ 1

point Z1(X;G) = G1(X)). So if X is a smooth local k-scheme of diemnsion 2 , and V ⊂ X is the

compliment of the closed point , a k-scheme of dimension 1 . We have Gi(X) = Gi(V ) for i ≤ 1

and H2
z (X;G) = H1

Zar(V ;G) .

Let K1(X;G) ⊂ Π′y∈X1H1
y (X;G) be the kernel of the boundary map Π′y∈X1H1

y (X;G) →
Πz∈X2H2

z (X;G) for any X ∈ Smk . Being the kernel of Zariski sheaves the sheaf X 7→ K1(X;G)

is a sheaf in the Zariski topology on ˜Smk . If X is a localisation of a smooth scheme then

Z1(X;G) → K1(X;G) is injective hence on ˜Smk we have an injective morphism Z1(−;G) →
K1(−;G) . Since for any X local of dimension ≤ 2 the complex C∗(X;G) is exact hence for

X smooth of dimension ≤ 2 we have bijection between Z1(X;G) → K1(X;G), since we have

bijection at all the localisations.

Remark 4. It follows from the previous descriptions that for any smooth(or localisation of a

smooth scheme) scheme of dimension ≤ 2 the H1 of the complex C∗(X;G) is H1
Zar(X;G).

We will add two more axioms on G

(A5) (a) For any separable field extension E ⊂ F in Fk , any discrete valuation v on F which

restricts to a discrete valuation w on E wih ramification index 1 , and such that the

induced extension ī : κ(w) → κ(v) is an isomorphism , the commutative square of

groups

G(Ow) //

��

G(Ov)

��
G(E) // G(F )

induces a bijection between H1
v (Ov;G)→ H1

w(Ow;G) .

(b) For any étale morphism X ′ → X between smooth local k-schemes of dimension 2 ,

with closed points z′ and z respectively , such that the induced morphism κ(z)→ κ(z′)

is an isomorphism , the pointed map

H2
z (X;G)→ H2

z′(X
′;G) has trivial kernel .

Lemma 4.2.4. Let G be an unramified sheaf of groups which satisfies (A2)’. Then the following

are equivalent :

1. The Zariski sheaf X 7→ K1(X;G) is a sheaf in Nisnevich topology on ˜Smk;

2. For any smooth k-scheme X of dimension ≤ 2 the comparison map H1
Zar(X;G)→ H1

Nis(X;G)

is a bijection;

3. G satisfies axiom A5 .
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Proof.1⇒ 2 As Z1(X;G) → K1(X;G) is a bijection for X ∈ Smk and dim(X) ≤ 2, we have

X 7→ Z1(X;G) is a sheaf in the nisnevich topology on smooth k-schemes of dimension ≤ 2.

So the exact sequence in the Zariski topology

1→ G ⊂ G0 ⇒ Z1(−;G)→ ∗

is then a exact sequence in the Nisnevich topology on the site smooth schemes over k

of dimension ≤ 2. Now H1
Nis(X;G0) is trivial (A.0.8). Hence the comparison map

H1
Zar(X;G)→ H1

Nis(X;G) is a bijection (by remark 4).

2⇒ 3 A5 a

By 2. of the lemma and by Appnedix A implies that this H1 set can also be defined using

Nisnevich-torsors. So we get the canonical isomorphismH1
v ((Ov)Nis, G)→ H1

w((Ow)Nis;G).

A5 b Let V = X − z and V ′ = X ′ − z′ . The follwoing square is distinguished

V ′ //

��

X ′

��
V // X

We have shown that H2
z (X;G) = H1

Zar(V ;G) , so the kernel of the map H2
z (X;G) →

H2
z′(X

′;G) is the set ofG-torsors over V (which are indifferent asH1
Zar(X;G) ∼= H1

Nis(X;G))

which becomes trivial over V ′ , but such a torsor can be extended to the trvial torsor of

X ′ , so this torsor can be extended from V to X (by gluing the torsor over X and torsor

over V ). Since X is local , H1
Nis(X;G) = H1

Zar(X;G) is zero, hence the extension to X is

trivial.

3⇒ 1 A 5 a implies that X 7→ G1(X) is a sheaf in Nisnevich topology (using elementary dintin-

guished Nisnevich squares) , and A5B implies that G2 is very closed to being a separated

presheaf in Nisnevich topology (a section that vanishes locally vanishes). Since K1(−;G) is

the kernel of the map G1 → G2 is then a sheaf in Nisnevich topology.

Lemma 4.2.5. Assume G satisfies A5. Fix an integer d ≥ 0.The following conditions are

equivalent :

1. For any smooth k-scheme X of dimension ≤ d the map Z1(X;G)→ K1(X;G) is bijective;

2. For any local smooth k-scheme of dimension ≤ d the map Z1(X;G)→ K1(X;G) is bijec-

tive;

3. For any local smooth k-scheme U of dimension ≤ d with function field F , the complex

C∗(X;G)

1→ G(U)→ G0(U) =⇒ G1(U)→ G2(U)

is exact.
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Moreover if G satisfies any one of the above we have H1
Zar(X;G) → Hi

Nis(X;G) is a bijection

for any smooth k-scheme of dimension d.

Proof. 1 ⇐⇒ 2 is clear as both are Zariski sheaves so the map is bijective iff sections over lo-

calisation at any point is bijective . 2 ⇒ 3 comes from the fact that the kernel of the map

G1(U) → G2(U) is equal to Z1(U ;G) . 3 ⇒ 1 First of all by the exactness of the sequence we

have for any X (localisation of a smooth k-scheme at a point of codimension ≤ d) the kernel

K1(X;G) = G0(X)\G1(X) = Z1(X;G), So the injective map between Zariski sheaves Z1 → K1

over the site of smooth k scheme of dimension ≤ d in Zariski topology induces isomorphism at

every stalk hence it is an isomorphism.

We have an exact sequence 1→ G ⊂ G0 ⇒ K1(−;G)→ ∗ of Nisnevich sheaves , and moreover

H1
Nis(X;G0) is trivial , so we get an exact sequence

1→ G(X) ⊂ G0(X)⇒ K1(X;G)→ H1
Nis(X;G)→ ∗ . Hence H1

Nis(X;G) = G0 \K1(X;G),

and we have K1(X;G) = Z1(X;G). So we have the following

G0(X) \ Z1(X;G) = H1
Zar(X;G)→ Hi

Nis(X;G) = G0 \K1(X;G) is a bijection.

Let us give another axiom related to A1-invariance property :

(A6) For any localisation U of a smooth k-scheme at some point u of codimension ≤ 1, the

complex

1→ G(A1
U )→ G0(A1

U ) =⇒ G1(A1
U )→ G2(A1

U )

is exact. Moreover the morphism G(U)→ G(A1
U ) is an isomorphism .

Theorem 4.2.6. Assume k is infinite . Let G be an unramified sheaf of groups on Smk that

satisfies the axioms (A2 ’) , (A5) , (A6) . Then it is strongly A1-invariant . Moreover , for any

smooth k-scheme the comparison map H1
Zar(X;G)→ H1

Nis(X;G) is a bijection .

Proof. The proof will follow from next three lemmas.

Lemma 4.2.7. Assume G is A1-invariant . Fix an integer d ≥ 0 . The following conditions are

equivalent :

1. For any smooth k-scheme X of dimension ≤ d the map G0(X)\Z1(X;G) = H1
Zar(X;G)→

H1
Zar(A

1
X ;G) = G0(A1

X) \ Z1(A1
X ;G) is bijective .

2. For any local smooth k-scheme U of dimension ≤ d

G0(A1
U ) \ Z1(A1

U ;G) = ∗

Proof. To show 1⇒ 2, we notice that U is a local k-scheme, so H1
Zar(X;G) = G0(U)\Z1(U ;G) =

∗.
To show 2⇒ 1 ,

If U = {Ui} is an open covering of X, then H1({Ui} ;G)→ H1(
{
A1 × Ui

}
;G) is a bijection,

because for any open V of X (for instance, V = Ui, V = Ui ∩ Uj) we have G(V ) = G(A1 × V )
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so the description of these two sets with cocycles are the same. (H1({Ui} ;G) is the subset of

H1(X;G) made of isomorphism classes of G-torsors that are trivial over each Ui. For any G-

torsor, there exists such a covering (Ui).) We have to show that for any G-torsor T over A1 ×X,

there exists {Ui} an open covering of X such that T is trivial over A1 × Ui. But (2) shows that

this is true locally, so there exists such a covering.

Lemma 4.2.8. Let G be an unramified sheaf of groups satisfying (A2 ’), (A5), (A6).

1. Let v be a discrete valuation on F ∈ Fk . Let v[T ] denote the discrete valuation in F (T )

corresponding to the kernel of Ov[T ]→ κ(v)[T ] . Then the map

H1
v (Ov;G)→ H1

v[T ](A
1
Ov

;G)

is injective and its image is exactly the kernel of

H1
v[T ](A

1
Ov

;G)→ Π′
z∈(A1

κ(v))
1H

2
z (A1

Ov
;G) .

2. For any k-smooth local scheme U of dimension 2 , with closed point u , the kernel of the

map

H2
u(U ;G)→ H2

u[T ](U ;G)

is trivial .

Proof. [MO1] lemma 1.30 page 33.

For any integer d ≥ 0 and for G as in theorem 4.2.6 we introduce two new properties

(H1)(d) For any local smooth scheme of dimension ≤ d the complex

1→ G(U)→ G0(U) =⇒ G1(U)→ G2(U)

is exact.

(H2)(d) For any localisation U of a smooth k-scheme at some point u of codimension ≤ d, the

complex

1→ G(A1
U )→ G0(A1

U ) =⇒ G1(A1
U )→ G2(A1

U )

is exact.

H1(d) is proved for d ≤ 2, and by A6, H2 1 holds.

Lemma 4.2.9. 1. (H1)(d)⇒ (H2)(d) .

2. If k is infinite : (H2)(d)⇒ (H1)(d+ 1) .

Proof. To prove 1 let us assume that U be an irreducible smooth k-scheme with function field F .
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G(U) //

��

G(F ) //

��

Π′y∈U1H1
y (U ;G) //

��

Π′z∈U2H2
z (U ;G)

��
G(A1

U ) //

��

G(F (T )) //

��

Π′
y∈(A1

U )1H
1
y (A1

U ;G) //

��

Π′
z∈(A1

U )2H
2
z (A1

U ;G)

G(F ) // G(F (T )) // Π′
y∈(A1

F )1H
1
y (A1

F ;G)

(4.2)

By the axiom A6 the bottom row is exact. G is A1-invariant by axiom A6 and lemma 3.2.13,

so G(U) → G(A1
U ) is a bijection. If U is local of dimension ≤ d, then by (H1)(d) the topmost

horizontal row is exact. The points y of codimension 1 in A1
U are of two types, either the image

of y in U is a generic point of U or it is a codimension 1 point of U. Set of those points of

codimension 1 in A1
U such that the image is the generic point is in bijection with (A1

F )1 and the

set of points whose image is codimension 1 point in U is in bijection with U1 given by the map

y ∈ U1 7→ y[T ] := A1
ȳ ⊂ A1

U (that is the generic point of A1
ȳ). So for y of the first type the set

H1
y (U ;G) = H1

y (A1
F ;G) and the set Π′

y∈(A1
U )1H

1
y (A1

U ;G) is the product of Π′
y∈(A1

F )1H
1
y (A1

F ;G)

with Π′y∈(U)1H1
y[T ](A

1
U ;G).

To prove (H2)(d) we have to prove exactness of the middle row, or to show that the action of

G(F (T )) on K1(A1
U ;G) is transitive.

Let a ∈ K1(A1
U ;G). The bottom horizontal row is exact, so Π′

y∈(A1
F )1H

1
y (A1

F ;G) one orbit un-

der the action of G(F (T )), now the map Π′
y∈(A1

U )1H
1
y (A1

U ;G)→ Π′
y∈(A1

F )1H
1
y (A1

F ;G) is G(F (T ))

invariant and the kernel is Π′y∈(U)1H1
y[T ](A

1
U ;G), hence there exists a g ∈ G(F (T )) such that

g.a ∈ Π′y∈(U)1H1
y[T ](A

1
U ;G).

So g.a is inside K1(A1
U ;G)∩Π′y∈(U)1H1

y[T ](A
1
U ;G) ⊂ Π′

y∈(A1
U )1H

1
y (A1

U ;G). By the first part of

the previous lemma Π′y∈U1H1
y (U ;G)→ Π′y∈(U)1H1

y[T ](A
1
U ;G) is injective and the image is exactly

the kernel of the composition of the boundary map Π′y∈(U)1H1
y[T ](A

1
U ;G)→ Πz∈(A1

U )2H2
z (A1

U ;G)

and the projection Πz∈(A1
U )2H2

z (A1
U ;G)→ Πy∈U1,z∈(A1

ȳ)1H2
z (A1

U ;G). This shows thatK1(A1
U ;G)∩

Π′y∈U1H1
y[T ](A

1
U ;G) is contained in Π′y∈U1H1

y (U ;G). The right vertical map in 4.2, Π′z∈U2H2
z (U ;G)→

Π′
z∈(A1

U )2H
2
z (A1

U ;G) is induced by the correspondance z ∈ U2 7→ A1
z̄. By 2 of the previous lemma

this map has trivial kernel. So by the commutativity of the top rightmost square of 4.2 we have

K1(A1
U ;G) ∩ Π′y∈U1H1

y[T ](A
1
U ;G) is contained in K1(U ;G). So g.a lies in K1(U ;G), but as the

topmost row is exact by (H1)(d) we have an h ∈ G(F ) such that hg.a = ∗. Hence the action is

transitive.

To prove 2 assume (H2)(d) holds. Let X be an irreducible smooth k-scheme of dimension ≤
d + 1 with function field F , let u ∈ X be a point of codimension d + 1, let U be the localised

scheme at u , F its function field.

Let a ∈ K1(U ;G) ∈ Π′y∈U1H1
y (U ;G). We have to show that there exists g ∈ G(F ) such that

a = g.∗. Let yi ∈ U the points of codimension one in U such that a has trivial component in

H1
yi(U ;G). Now by definition H1

y (U ;G) = H1(X;G) for y ∈ U1. Let aX ∈ Π′y∈X1H1
y (X;G)

be the unique element with same support yi’s and the same component as a. Though aX may

not be in K1(X;G), but by axiom (A2)′, its boundary is trivial except on finitely many zj of

codimension 2 point of X. Now this points are not in U2 either. So we can remove the closure of
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this zj ’s to get an open subscheme Ω′ in X which contains u and the yi’s and the corresponding

element induced by a denoted by aΩ′ ∈ Π′y∈Ω′1H
1
y (X;G) is in K1(Ω′, G).

Since k is inifinite , by Gabber’s geometric presentation lemma (see 5.2.8) there exists an

open subscheme Ω of Ω′, containing u and the yi’s and an étale morphism Ω → A1
V , With V

smooth of dimension d, such that if Y ⊂ Ω denotes the reduced closed subscheme whose generic

point are the yi, the composition Y → Ω → A1
V is still a closed immersion and the composition

Y → Ω→ A1
V → V is a finite morphism.

As U is the localization of Ω at u, the étale morphism U → A1
V induces a morphism of

complexes of the form

G(E(T )) //

��

Π′
y∈(A1

V )1H
1
y (A1

V ;G) //

��

Π′
z∈(A1

V )2H
2
z (A1

V ;G)

��
G(F ) // Π′y∈U1H1

y (U ;G) // Π′z∈U2H2
z (U ;G)

(4.3)

Here E is the function field of V . Let y′i are the images of yi in A1
V , these are points of

codimension 1 and since Y → A1
V is a closed immersion they have same residue field. By the

axiom (A5)(a), for each i the map H1
y′i

(A1
V ;G) → H1

yi(U ;G) is a bijection, so there exists an

element a′ ∈ Π′
y∈(A1

V )1H
1
y (A1

V ;G) whose image is a. If z ∈ (A1
V )2 is not in image of Y then by

definition of the boundary map and a′ the boundary of a′ has trivial component in H2
z (A1

V ;G).

If z ∈ (A1
V )2 is in the image of Y in A1

V , there is an unique point z′ of codimension 2 in Ω, lying

in Y mapping to z. It has the same residue field as z. So z′ gives a codimension 2 point in U . By

the commutativity of the rightmost square and (A5)(b) a′ has a trivial component in H2
z (A1

V ;G).

Which proves that the boundary of a′ is trivial.

As (H2)(d) is satisfied we have a′ = h.∗ for some h ∈ G(E(T )). If g is the image of h in G(F )

we have a = g.∗.

Now lets prove theorem 4.2.6 . As k is infinite , using the lemma 4.2.9 and by induction

arguement ((H1)(1), (H1)(2) and (H2)(1) is true) it is clear thatG satisfies (H1)(d) and (H2)(d) for

all d. By (H1)(d) G satisfies the property three of the lemma 4.2.5 hence the map H1
Zar(X;G)→

H1
Nis(X;G) is a bijection for all smooth scheme X of dimension d for all d. So we have to show that

condition 1 of lemma 4.2.7 is satisfied. For any smooth scheme X we have K1(X;G) = Z1(X;G)

. Also as G satisfies A6, G is A1-invariant and it satisfies H2(d), so it satisfies the condition 2 of

lemma 4.2.7. Hence the condition 1 is satisfied.
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Chapter 5

Strongly A1 invariance of the

sheaves πA
1

n , n ≥ 1

5.1 Main Idea

Using the properties of last two chapters we will show that

Result 2. For any pointed space B, its A1 fundamental sheaf of groups πA
1

1 is strongly A1

invariant .

To show that πA
1

1 (B) satisfies the properties of strongly A1-invariantness, described in last

two chapters, we will study the local properties of πA
1

1 (B). The only non trivial theorem used

here without proof is the following :

Lemma 5.1.1 (Gabbers presentation lemma). Let X be a smooth , affine , irreducible variety

of dimension d over an infinite field k , let t1, ....., tr ∈ X be a finite set of points and Z a closed

subvariety of codimension > 0 . Then there exists a map ϕ = (ψ, υ) : X → Ad−1 ×A1 , an open

set V ⊂ Ad−1 , and an open set U ⊂ ψ−1(V ) containing t1, ....., tr such that

1. Z ∩ U = Z ∩ ψ−1(V ).

2. ψ |Z is finite .

3. ϕ |U is étale and defines a closed immersion Z ∩ U → A1
V .

4. ϕ(ti) /∈ ϕ(Z) if ti /∈ Z .

5. ϕ−1(ϕ(Z ∩ U)) ∩ U = Z ∩ U .

5.2 The proof of srongly A1-invariance of πA
1

1

Definition 5.2.1. A B.G class of objects in Sm/k is a class A of objects in Sm/k such that :

1. For any object X ∈ A and any open immersion U → X we have U ∈ A .
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2. Any smooth k-scheme X has a nisnevich covering which consists of objects in A.

In this section by a B.G class we will mean all the objects of Smk.

Definition 5.2.2. A simplicial presheaf S on (Sm/k)Nis is said to have the B.G property with

respect to A ( B.G class of objects ) if for any elementary distinguish square (2.3.17) such that

X and V belong to A the square of simplicial sets

S(X) //

��

S(V )

��
S(U) // S(U ×X V )

is homotopy cartesian .

Theorem 5.2.3. For any pointed space B, its A1 fundamental sheaf of groups πA
1

1 is strongly A1

invariant .

Proof. We will directly show that πA
1

1 is unramified and satisfies the axioms (A2’),(A5) and (A6)

of section 2.

Theorem 5.2.4. Let B be a pointed simplicial presheaf of sets on Smk which satisfies the B.G

properties in the nisnevich topology and the A1 invariance property (see [MOREL] definition

A.1.5) . Then the associated sheaf of groups to the presheaf U 7→ π1(B(U)) is strongly A1 invariant

.

Lemma 5.2.5. The last two theorems are equivalent .

Proof. (using results from [MOREL] appendix A.1 and [MV]) Suppose theorem 5.2.4 is true. The

simplicial fibrant resolution LA1(B) is A1 local , so it satisfies the propersties of theorrem 5.2.4.

Now the sheaf associated to the presheaf U 7→ HomH•(k)(
∑

(U+),B) is same as the sheaf

associated to the presheaf U 7→ HomHs(k)(
∑

(U+), LA1(B)) . But we have equality of sheaves

between the sheaf associated to the presheaf U 7→ π1(LA1(B) and the sheaf associated to the

presheaf U 7→ HomHs(k)(
∑

(U+), LA1(B)) . Hence theorem 5.2.3 is proved .

Now suppose theorem 5.2.3 is true, then for any presheaf B satisfying properties of theorem

5.2.4, take the sheafification a(B), take the fibrant resolution LA1a(B), because of [MV], Prop

1.16, page 100, this is simplicially equivalent to a(B) which is simplicially equivalent to B. So using

the previous description of different homotopy sheaves of simplicial sets we can prove theorem

5.2.4.

Corollary 5.2.6. For any pointed space B , and any integer n > 1, the A1- homotopy sheaf of

groups πA
1

n (B) is strongly A1-invariant.

Proof. Take LA1(B) and take the (n− 1)th iterated simplicial sheaf Ωn−1
s (LA1(B)) (see [MV]). It

can be shown that this satisfies the conditions of theorem 5.2.4. Hence applying theorem 5.2.4

we get that the sheaf associated to presheaf U 7→ π1(Ωn−1
s (LA1(B)))(U)) is strongly A1 invariant,

but the previous sheaf is isomorphic to the sheaf associated to the presheaf U 7→ πn(LA1B(U)).

So πA
1

n (B) is strongly A1 invariant.
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Lemma 5.2.7. Given a pointed A1-local space B , the connected component of the base point B0

is also A1-local and the morphism

πA
1

1 (B0)→ πA
1

1 (B) is an isomorphism .

Proof. LA1B0 is zero connected if ∀X ∈ Smk and ∀x ∈ X the simplicial set LA1B0(OhX,x) is

connected, as LA1B0 is simplicially equivalent to B0, this shows that LA1B0 is 0-connected. We

have the following commutative square

B0 //

��

B

v

��
LA1B0 // LA1B

and LA1B = B. By assumption B0 is the connected component of the base point. So the

induced map LA1B0 → B induces a map LA1B0 → B0 giving an inverse to B0 → LA1B0. So B0 is

a retract in H(k) of the A1-local space LA1B0, so it is A1 local .

So we can assume that B is A1-local and 0-connected . For an open immersion U ⊂ X and

any n > 0 we set

Πn(X,U) := [Sn
∧

(X/U),B]H∗(k) = πn(B(X/U)) ,

where Sn denotes the simplicial n-sphere . We may extend this to an open immersion U → X

between essentially smooth k-schemes by passing to the colimit.

Lemma 5.2.8 (Gabbers presentation lemma). Let X be a smooth , affine , irreducible variety

of dimension d over an infinite field k , let t1, ....., tr ∈ X be a finite set of points and Z a closed

subvariety of codimension > 0 . Then there exists a map ϕ = (ψ, υ) : X → Ad−1 ×A1 , an open

set V ⊂ Ad−1 , and an open set U ⊂ ψ−1(V ) containing t1, ....., tr such that

1. Z ∩ U = Z ∩ ψ−1(V ).

2. ψ |Z is finite .

3. ϕ |U is étale and defines a closed immersion Z ∩ U → A1
V .

4. ϕ(ti) /∈ ϕ(Z) if ti /∈ Z .

5. ϕ−1(ϕ(Z ∩ U)) ∩ U = Z ∩ U .

Lemma 5.2.9. Assume k is infinite . Let X be a smooth k-scheme , S ⊂ X be a finite set of points

and Z ⊂ X be a closed subscheme of codimension > 0. Then there exists an open subscheme

Ω ⊂ X containing S and a closed subscheme Z̃ ⊂ Ω , of codimension d−1 , containing ZΩ := Z∩Ω

such that the map of the pointed sheaves Ω/(Ω− Z̃)→ Ω/(Ω− ZΩ) is the trivial map in H•(k) .

Proof. By Gabber’s geometric presentation lemma there exists an open neighborhood Ω of S , a

morphism ϕ : Ω→ A1
V with V some open subset in some affine space over k and the morphism is

étale by 3 of the previous lemma . By 3 again we have ZΩ := Z ∩Ω→ A1
V closed immersion . By

5 we have ϕ−1(ϕ(ZΩ))∩Ω = ZΩ and by 2 we have ZΩ → V is a finite morphism . Let F denotes
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the image of ZΩ in V . Let Z̃ := ϕ−1(A1
F ) . Now dim(F ) = dim(Z), thus codimension(Z̃) = d−1

.

Since the following square is an elementary distinguish square in Nisnevich topology

(Ω− ZΩ) //

��

Ω

��
(A1

V − ZΩ) // A1
V

We have , the isomorphism of sheaves

Ω/(Ω− ZΩ) ∼= A1
V /(A

1
V − ZΩ) .

The commutativity of the following square

Ω/(Ω− Z̃) //

��

Ω/(Ω− ZΩ)

∼
��

A1
V /(A

1
V −A1

F ) // A1
V /(A

1
V − ZΩ)

shows that it is sufficient to show that the map of pointed sheaves

A1
V /(A

1
V −A1

F )→ A1
V /(A

1
V −ZΩ) is the trivial map in H•(k) . Now ZΩ → F is finite , hence

the composition ZΩ → A1
F ⊂ P 1

F is still a closed immersion , so it has empty intersection with

the section at infinity s∞ : V → P 1
V . Since the following square ,

(A1
V − ZΩ) //

��

A1
V

��
(P 1
V − ZΩ) // P 1

V

is an elementary disnguish square we have A1
V /(A

1
V −ZΩ) ∼= P 1

V /(P
1
V −ZΩ) . So it is sufficient

to prove that

A1
V /(A

1
V −A1

F ) ∼= P 1
V /(P

1
V −ZΩ) is the trivial map in H•(k) . Now the morphism s0 : V/(V −

F ) → A1
V /(A

1
V − A1

F ) induced by the zero section is an A1-weak equivalence.The composition

s0 : V/(V − F ) → A1
V /(A

1
V − A1

F ) → P 1
V /(P

1
V − ZΩ) is A1 homotopic to the section at infinity

s∞ : V/(V −F )→ P 1
V /(P

1
V −ZΩ) . But the image of s∞ is disjoint from ZΩ , so s∞ : V/(V −F )→

P 1
V /(P

1
V − ZΩ) is equal to the point.

Corollary 5.2.10. Assume k is inifinite . Let X be a smooth (or localisation of a smooth

k-scheme) k-scheme, S ∈ X be a finite set of points and Z ⊂ X be a closed subscheme of

codimension d > 0 . Then there exists an open subscheme Ω ⊂ X containing S and a closed

subscheme Z̃ ⊂ Ω , of codimension d− 1 , containing ZΩ := Z ∩ Ω and such that for any n ∈ N
the map Πn(Ω,Ω−ZΩ)→ Πn(Ω,Ω− Z̃) is the trivial map . In particular , observe that if Z has

codimension 1 and X is irreducible , then Z̃ must be Ω . Thus for any n ∈ N the map

Πn(Ω,Ω− ZΩ)→ Πn(Ω)

is the trivial map .

Proof. The map between Πn(Ω,Ω − ZΩ) → Πn(Ω) is obatained from the map between Ω/(Ω −
Z̃)→ Ω/(Ω−ZΩ) . By the previous theorem Ω/(Ω−Z̃)→ Ω/(Ω−ZΩ) is the trivial map in H•(k)
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. Hence Πn(Ω,Ω− ZΩ)→ Πn(Ω) is the trivial map . If X is irreducible and Z has codimension

1 then codimension Z̃ is 0 , and since U is irreducible so it implies U = Z̃ .

Now let X be localisation of a smooth scheme . For any flag of open subschemes V ⊂ U ⊂ X
of X and from the cartesian daigram

B(U/V ) //

��

B(X/V )

��
pt // B(X/U)

We get the long exact sequence of homotopy groups

· · · → Π1(X,U)→ Π1(X,V )→ Π1(U, V )→ Π0(X,U)→ Π0(X,V )→ Π0(U, V ) (5.1)

where the exactness at Π0(X,V ) is the exactness in the sense of pointed sets , and at Π0(X,U)

there is an action of the group Π1(X,U) on the set Π0(X,U) , so the exactness there is usual

exactness of group action . The exactness elsewhere is exactness for group diagrams .

Let X be the localisation of a smooth k-scheme at a point x, and x be its closed point . For

any flag F : Z2 ⊂ Z1 ⊂ X of closed reduced subschemes , with Zi of codimension at least i . Let

Ui = X − Zi , so we get a corresponding flag of open subschemes U1 ⊂ U2 ⊂ X . The set F of

flags is ordered by increasing inclusion of closed subschemes. So if U = U1 and V = ∅ we get an

exact sequence :

· · · → Π1(X,U1)→ Π1(X)→ Π1(U1)→ Π0(X,U1)→ Π0(X)→ Π0(U1) (5.2)

Let S is the set containing only the closed point x and, using the previous lemma, we see that

Ω = X (since X local and Ω contains the closed point ), and we get that the maps for any n

Πn(X,U1)→ Πn(X) are trivial .

So we get a short exact sequence

1→ Π1(X)→ Π1(U1)→ Π0(X,U1)→ ∗ (5.3)

and a map of pointed sets Π0(X) → Π0(U1) which has trivial kernel . Taking the right filtering

colimit on flags we get a short exact sequence

1→ Π1(X)→ Π1(F )→ colim(Π0(X,U1))→ ∗ (5.4)

and a pointed map with trivial kernel Π0(X) → Π0(F ) , where F is the field of functions of

X . Now B is 0-conected so we have Π0(F ) = ∗ and hence Π0(X) = ∗.
Consider for any flag of open subschemes U1 ⊂ U2 ⊂ X

· · · → Π0(X,U2)→ Π0(X,U1)→ Π0(U2, U1) (5.5)

Again we can apply the previous corollary to X, with S as the set with the closed point and to

the closed subset Z2 ⊂ X , again Ω = X and there exists Z̃ ⊂ X of codimension 1 , containig Z2

such that Π0(X,U2)→ Π0(X,X − Z̃) is the trivial map . Define a new flag F̄ : Z̄2 ⊂ Z̄1 ⊂ X by
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setting Z̄2 = Z2 and Z̄1 = Z1
⋃
Z̃, then the map colimΠ0(X,U2) → colimΠ0(X,U1) is trivial.

So using the exact sequence 5.5 we find that the map

colimΠ0(X,U1)→ colimΠ0(U2, U1) (5.6)

has trivial kernel. Now using the exact sequence related to the flags of opensets of the form

∅ ⊂ U1 ⊂ U2 we can get a action of Π1(F ) on colimΠ0(U2, U1) such that the map 5.6 is Π1(F )

equivariant . But by equation 5.4 colimΠ0(X,U1) is one orbit under Π1(F ) hence the map

colimΠ0(X,U1)→ colimΠ0(U2, U1) is injective.

So we have shown that if k is an infinite field and X is localisation of a smooth k-scheme with

function field F . The natural sequence

1→ Π1(X)→ Π1(F )⇒ colimΠ0(U2, U1) (5.7)

is exact, where the double arrow means group action .

If X is localization at a point x of codimension 1. There exists only one non empty closed

subset of positive codimension, which is the closed point x. Hence the set colimΠ0(U2, U1) reduces

to the Π1(F )-set Π0(X,X − x). Using the exact sequence 5.3 we find that the action of Π1(F )

on Π0(X,X − x) is transitive and Π0(X,X − x) = Π1(F )/Π1(X) . Let us denote Π0(X,X − x)

by H1
y (X; Π1) .

Let X ′ → X be étale morphism between smooth local k-schemes . This will induce morphism

of corresponding associated exact sequences

1 //

��

Π1(X) //

��

Π1(F )⇒

��

colimΠ0(U2, U1)

��
1 // Π1(X ′) // Π1(F ′)⇒ colimΠ0(U ′2, U

′
1)

(5.8)

Now if we allow X ′ to be the localisation of X at codimension one points then we get a Π1(F )

invariant map

colimΠ0(U2, U1)→ Πy∈X1H1
y (X; Π1) (5.9)

Lemma 5.2.11. The above map is injective and its image is the weak product , giving a bijection

: colimΠ0(U2, U1)→ Π′y∈X1H1
y (Π1)

Proof. Let x ∈ colimΠ0(U2, U1) . Hence x is represented by say (x′,F) where F is a flag but now

for the flag F we have U1 ⊂ U2 ⊂ X and if U1 contains a point of codimnsion one y then the

inverse image of U1 is the whole X ′ (where X ′ is the localisation of X at y) , Hence (x′,F) gets

map to Π0(X ′, X ′) = ∗ whenever y ∈ U1 , but by the noetherian property there are only finitely

many codimensional one point outside U1 hence the image of the map is inside Π′y∈X1H1
y (Π1).

Corollary 5.2.12. Let k is an inifinte field

1. Let X be smooth local k-scheme with function field F . Then the natural sequence :

1→ Π1(X)→ Π1(F )⇒ Π′y∈X1H1
y (X; Π1) is exact .
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2. The Zariski sheaf associated with X 7→ Π1(X) is a sheaf in the nisnevcih topology and

coincides with πA
1

1 (B) , which is thus unramified .

Proof. 1. this follows directly from the previous lemma and the the exact sequence 5.7 .

2. Let G be the sheaf (Π1)Zar . If X is local then by the property of Zariski sheaves G(X) =

Π1(X) . By 1 , take the sheaf associated to the presheaf X 7→ Πy∈X0G(κ(y)) and the

sheaf X 7→ Π′y∈X1H1
y (X; Π1) . After localisation by part 1 we get the exact sequence

1 → Π1(X) → Π1(F ) ⇒ Π′y∈X1H1
y (X; Π1) , so the exact sequence of sheaves , global

sections are left exact, hence for any k-smooth X irreducible with function field F we get

an exact sequence :

1→ G(X)→ G(F )⇒ Π′y∈X1H1
y (X;G). (5.10)

IfX is local of dimension 1 with closed point y, by exact sequence 5.3 we get thatH1
y (X;G) =

H1
y (X; Π1) = H1

Nis(X,X − y;π1(B)) .

If V → X is an étale morphism between local k-schemes(localisation of smooth k-schemes)

of dimension 1, with closed point y′ and y respectively , and with the same residue fields

κ(y) = κ(y′) , the map

H1
Nis(X,X − y;π1(B))→ H1

Nis(V, V − y′;π1(B)) (5.11)

is bijective .

Using elementary distinguish square and the last isomorphism it can be shown that X 7→
Π′y∈X1H1

y (X; Π1) is a sheaf in the Nisnevich topology on ˜Smk .

Using the exact sequence 5.10 we see that X → G(X) is a sheaf in nisnevich topology

since it is the kernel of the morphism between two Nisnevich sheaves . But now the map

Π1 → G induces isomorphism between a(Π1)Zar → G , so it induces isomorphism between

a(Π1)Nis → GNis but G is already a Nisnevich sheaf and a(Π1)Nis = πA
1

1 (B). Hence the

morphism πA
1

1 (B)→ G is an isomorphism .

To show that G is unramified , we can show that G defines an unramified Fk set . D1 can

be constructed as in the proof of theorem 3.2.7 section 1. It satisfies D2 follows from exact

sequence 5.7 . Moreover it satisfies A1 follows from 5.11 . To show A2 consider the exact

sequence 5.10 , If y ∈ ∩x∈X1G(OX,x) then y fixes the point of Π′y∈X1H1
y (X; Π1) , hence y

is in G(X) . So like the proof of axiom A2 in theorem 3.2.7 we can prove that G satisfies

the axiom A2. So G is unramified.

Theorem 5.2.13. G is strongly A1 invariant .

Proof. To prove the theorem we will directly show that G satisfies (A2)’ , (A5) and (A6) . Axiom

(A5)(a) follows directly from the bijection 5.11 and the description of H1
v (X;G) for X local of

dimension 1 with closed point v. Now we have the following exact sequence

1 → G(X) → G(F ) ⇒ Π′y∈X1H1
y (X;G) for X dimension 1 smooth k schemes, so this gives

an exact sequence of sheaves of dimension ≤ 1 in Nisnevich and Zariski topology. By 5.11
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X 7→ Π′y∈X1H1
y (X;G) is flasque in Nisnevich topology. So we get for any smooth k-scheme V of

dimension ≤ 1 a bijection

H1
Zar(V ;G) = H1

Nis(V ;G) = G(F ) \Π′y∈X1H1
y (X;G) .

For X a smooth local k-scheme of dimension 2 with closed point z and V = X − z, We get

H1
Nis(V ;G) = H2

z (X;G) . Using the same method as in lemma 4.2.4 section 3 we get Axiom

(A5) (b)

To prove (A2’) observe that

colimΠ0(U2, U1) ∼= Π′y∈X1H1
y (X;G)

for any smooth k-scheme X .

Let z ∈ X2 and Xz be the localisation of X at z , moreover let Vz = Xz − z . We have

shown earlier that H1
Zar(V ;G) = H1

Nis(V ;G) = H2
z (X;G) . And by part 2 of the next lemma we

have H1
Nis(V ;G) = Π0(Vz) = [(Vz)+,B]H•(k) , since B is A1 local and fibrant and Vz is a smooth

scheme of dimension 1.

For a fixed flag F in X , by definition , the composition Π0(U2, U1) → Π(U2) → H2
z (X;G)

is trivial if z ∈ U2 . So given an element of Π′y∈X1H1
y (X;G) which comes from Π0(U2, U1) , its

boundary to Hz
2 (X;G) at points of codimension 2 are trivial except for those z not in U2 , but

there are only finitely many such z’s . This proves (A2′) .

To show A6 we first observe that using the first part of the next lemma for any field F ∈ Fk,

the map [
∑

((A1
F )+),B]H•(k) → [

∑
((A1

F )+), B(G)]H•(k) = G(A1
F ) is onto. As B is A1 local,

[
∑

((A1
F )+),B]H•(k) = [

∑
((F )+),B]H•(k) = G(F ) and this show that the map G(F )→ G(A1

F ) is

onto, it is injective, so it is an isomorphism. So G is A1 invariant.

Now using the second part of the next lemma for any k-scheme X which comes from the

localisation of a smooth scheme at a point of codimension ≤ 1, the map [((A1
X)+),B]H•(k) →

[((A1
X)+), B(G)]H•(k) = H1

Nis(A
1
X ;G) is onto. As B is 0-connected and A1-local, this shows that

H1
Nis(A

1
X ;G) = ∗. Now G satisfies A5 hence H1

Nis(A
1
X ;G) = ∗ = H1

Zar(A
1
X ;G). So the complex

C∗(X;G) (described in chapter 3) is exact which proves A6.

Lemma 5.2.14. 1. For any smooth k-scheme X of dimension ≤ 1 , the map [
∑

((X)+),B]H•(k) →
[
∑

((X)+), B(G)]H•(k) = G(X)

2. For any smooth k-scheme X of dimension ≤ 2 the map

[(X)+),B]Hs,•(k) → [(X)+), B(G)]Hs,•(k) = H1
Nis(X;G)

is onto and it is surjective if dim(X) ≤ 1 .

Where G = π1(B) .

Proof. Appendix B [MOREL]
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Chapter 6

A1-coverings, πA
1

1 (Pn) and πA
1

1 (SLn)

In this chapter we will first define simplicial covering and A1 covering for sheaves of simplicial sets

on Sm/k (6.1.1). Then we will show that like normal algebraic topology there exists universal

simplicial and A1 covering by 6.1.5 and 6.1.8, we will also include a weak version of Van Kampen’s

theorem in A1 setting (6.1.10). Our main aim is to compute some A1 fundamental groups, and

for that we show the following two theorems:

Result 3. For n ≥ 2 the canonical Gm-torsor An+1 \ {0}) → Pn is the universal A1-covering of

Pn. This defines a canonical isomorhism πA
1

1 (Pn) ∼= Gm.

Where Gm is the simplcial sheaf concentrated at degree 0 represented by A1 \ {0}. And we

also have

Result 4. We have πA
1

1 (SL2) ∼= KMW
2 .

Using the last result and lemma 6.2.4 and lemma 6.2.5 we can describe the A1-fundamental

groups of SLn, for all n ≥ 2.

Also we will show that:

Result 5. The fundamental group sheaf πA
1

1 (P 1) is not abelian.

For the computation part we use KMW
2 and KM

2 , which are Milnor Witt K theory sheaves of

weight 2 and Milnor K-theory sheaves of weight 2 respectively. For details see [MO1, section 2].

6.1 A1-coverings, universal A1-coverings and πA
1

1

Definition 6.1.1. A simplicial covering (resp. an A1-covering) Y→ X is a morphism of spaces

which has the unique right lifting property with respect to simplicially (resp. A1) trivial cofibra-

tions.

Lemma 6.1.2. A morphism Y → X is a simplicial (resp A1) covering if and only if it has the

unique right lifting property with respect to any simplicial(resp. A1) weak equivalences.

Proof. First of all it is enough to show that a simplicial covering has unique right lifting property

with respect to any simplicial weak equivalences. Let Y → X be the map and let A → B is a

simplicial weak equivalence , also let us assume that we have the following commutative diagram
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A //

��

Y

��
B // X

Now using the properties of closed model category we can write the map A→ B as composition

of A→ C a trivial cofibration and A→ B a trivial fibration. Since Y→ X is a simplicial covering

so it has the unique right lifting property with respect to trivila cofibartion, so we can assume

that A→ B is a trivial fibration. Uniqueness of the lifting map comes from the fact that trivial

fibrations are epimorphisms of spaces (?). Next we have that A and B are cofibrant(by definition

of the model category structure i both cases). Again using the property of trivial fibration ( right

lifting property with respect to cofibration) we can get a map i : B → A which is a section of

A→ B and i is a trivial cofibration. We have the following diagram

B
f◦i //

i

��

Y

g

��
A
g◦f◦i◦π// X

Where π : A→ B. As i is a trivial cofibration we get f ◦ i ◦ π = f hence fro the diagram

A
f //

π

��

Y

g

��
B // X

has a solution which is f ◦ i : B→ Y.

Remark 5. A morphism Y → X in Smk, with X irreducible, is a simplicial covering if and only

if Y is a disjoint union of copies of X maping identically to X.

6.1.1 The simplicial theory

Lemma 6.1.3. If Y → X is a simplicial covering then for each x ∈ X ∈ Smk the morphism of

simplicial sets Yx → Xx is a covering of simplicial sets.

Proof. Let ∧n,i ⊂ 4n be the union of all faces of 4n except the i-th face for i ∈ {0, .., n}. By the

theory of simplicial sets we know that ∧n,i ⊂ 4n is an weak equivalence and moreover we have

to show that Yx → Xx has right lifting property with respect to ∧n,i ⊂ 4n. Let x ∈ X and U

be a Nisnevich neighborhood of x then since Y→ X is a simplicial covering we have the desired

right lifting property of Y → X with respect to ∧n,i × U ⊂ 4n × U . Hence the map Yx → Xx

has the right lifting property with respect to ∧n,i ⊂ 4n.

Definition 6.1.4. Let X be a simplicial sheaf over (Sm/k)Nis. A simplicial sheaf X̃ → X over

(Sm/k)Nis is called a simplicial universal covering of X if X̃ → X is a simplicial covering and X̃

simplicially 1-connected, moreover if X′ → X is a covering such that X′ is 1-connected then X′ is

isomorphic (canonically) to X̃ . Also it is the universal object (initail ) in the category of pointed

simplcial covering of X.
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Proposition 6.1.5. Let X be a simplicial sheaf over (Sm/k)Nis such that X is connected. there

exists an universal covering of X.

Proof. Sketch of the proof: Main point of the proof is to use 6. By Postnikov tower, for any

pointed simplicially connected space X, there exist a canonical morphism on Hs,•(k) of the form

X → BG, where G is the group sheaf π1(X), so by ?? there is a canonical isomorphism class

X̃ → X of G-torsors. By we can point X̃ by lifting the base point of X. X̃ is simplicially 1-

connected, which can be shown calculating the stalks and using the classical theory of silmplicial

sets. We need to show that this X̃→ X gives the universal simplicial covering. Let X′ → X is any

other simplicially 1-connected covering. We need to show that this is canonically isomorphic to

the G-torsor X̃→ X. First of all by the properties of 2.4.3 we can show that X̃→ X is a simplcial

covering (infact any G-torsor is a simplcial covering). Now observe that X′ → X→ BG→ BG is

homotopically trivial, since X′ is 1-connected. We have a canonical covering EG→ BG, which is a

simplicial fibration , so EG is simplicially fibrat. So there is a lifting X′ → EG, and the following

sqaure commutes

X′ //

��

EG

��
X // BG

By the theory of simplcial sets (covering of simplicial set) and using the previous lemma , this

square is cartesian on each stalk, hence cartesian. So X′ → X is as covering isomorphic to the

covering X̃ → X and also as a pointed covering. Given any pointed simplcial covering X′ → X

, we have the connected component of the base point X0′ of X′. X0′ → X is still a pointed

simplicial covering. Now we construct universal covering of X0′, by the above porcedure which is

also universal covering of X. So there exists an unique isomorphism form the pointed universal

covering of X to the pointed universal covering of X0′. So the composition X̃→ X′ is the unique

morphism of pointed covering spaces. So we have X̃→ X as the universal object in the category

of pointed simplicial covering of X.

6.1.2 The A1- theory

A simplical trivial cofibration is a A1-trivial cofibration by definition. Hence a A1-covering is also

a simplicial covering.

Lemma 6.1.6. 1. A G-torsor Y → X with G a strongly A1-invariant sheaf of groups is an

A1-covering.

2. Any G-torsor Y → X in the étale topology, with G a finite étale k-group of order prime to

the characteristic, is an A1-covering.

Proof. 1. The set P (X, G) of isomorphism classes of G-torsors over a space X is in one to one

correspondence with [X, BG]Hs(k). Now G is a strongly A1-invariant sheaf of groups implies

BG is A1-local (?). So we have P (X, G) = [X, BG]Hs(k) = [X, BG]H(k). Now we have the

58



following commutative diagram

A
f //

π

��

Y

g

��
B // X

where A → B is a A1-trivial cofibration. So we have a bijection [B, G]H(k) → [A, G]H(k).

Commutativity of the above square shows that if we pullback the G-torsor Y→ X over B

and then restrict it to A , it becomes a trivial G-torsor over A(?) , but since [B, BG]H(k) →
[A, BG]H(k) is a bijection the pullback to B itself is the trivial G-torsor B×G , so we have

a section s : B→ B×G→ Y of the map Y→ X. The composition s◦π : A→ Y might not

be equal to the morphism f : A→ Y. But by properties of G-torsors there exists g : A→ G

such that s ◦ π = g.f(?). Now G is A1 invariant so the map Hom(B, G) → Hom(A, G)

is a bijection. Let g̃ : B → G be the extension of g. Now we have g̃−1.s : B → Y whose

composition with π gives the map f . Now suppose there exists another map s′ : B → Y

such that s′ ◦ π = f then there exists g̃′ : B → G such that g̃−1.s = g̃′.s′ but then we

have s′ ◦ π = g̃′.s′ ◦ π = g′.f = f which implies g′ = id ∈ Hom(A, G), but Hom(B, G) →
Hom(A, G) is an isomorphism, hence g̃′ = id ∈ Hom(B, G). So the uniqueness follows.

2. The space Bet(G) = Rπ∗(BG) is A1-local where π : (Smk)et → (Smk)Nis is the canonical

morphism of sites.But then [X, Bet(G)]H(k) = [X, Bet(G)]Hs(k) = HomHs(Smk)et(π
∗(X, BG) =

H1
et(X;G). Moreover if A → B is a A1-trivial cofibration then H1

et(B;G) → H1
et(A;G) is

a bijection. Again since G is A1 invariant Hom(B, G) → Hom(A, G) is an isomorphism.

Hence the same reasoning as in part 1 will give the proof.

Remark 6. In particular any Gm torsor is an A1 covering . Let A = k[x0, ..., xn]. So Pn =

Proj(A). We have Pn =
⋃n
i=0D+(xi) and D+(xi) ∼= Spec((Axi)0). This gives a map (Axi)0 →

Axi , which gives map An+1 \ {0} =
⋃n
i=0 Spec(Axi) → D+(xi) = Pn. This map gives a Gm

torsor An+1 \ {0} → Pn. In particular for any smooth projective variety of non zero dimension

has nontrivial A1 covering by pulling back the Gm torsor An+1 \ {0} → Pn over the variety.

Lemma 6.1.7. 1. Any pull back of an A1-covering is an A1-covering.

2. The composition of two A1-coverings is an A1-covering.

3. Any A1-covering is an A1-fibration.

4. A morphism Y1 → Y2 of A1-coverings Yi → X which is an A1-weak equivalence is an

isomorphism.

Proof. 1. Suppose Y→ X is an A1-covering and Z→ X is any morphism suppose there exists

a commutative diagram

A
f //

π

��

Y×X Z

g

��
B // Z
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such that the map A→ B is anA1-weak equivalence then we have the following commutative

diagram

A
f //

π

��

Y×X Z //

g

��

Y

��
B // Z // X

Now Y → X is an A1-covering implieas there exists a unique map B → Y comuuting the

above diagram , but then using the universal property of pullbacks we get a unique map

from B→ Y×X Z.

2. Let f : Y→ X and g : Y′ → Y be two A1-covering. And let we have the following diagram

A
p //

π

��

Y′

g◦f
��

B
q // X

Where A→ B is an A1-weak equivalence. Then we have the following commutative diagram

A
p◦g //

π

��

Y

f

��
B

q // X

Which by definition gives a unique morphism q′ : B → Y such that the two triangles

commutes. Now using this q′ we have the following diagram

A
p //

π

��

Y′

g

��
B

q′ // Y

Which again by definition gives a unique morphism q′′ : B→ Y′.

3. Follows from the definition of A1-fibration.

4. Y1 → Y2 We have the following diagram

Y1
id //

h

��

Y1

p1

��
Y2

p2 // X

So we have a unique map g : Y2 → Y1, which is also an A1-weak equivalence by the

properties of model category, and g ◦ h = id. Using this g we have the follwoing diagram

Y2
id //

g

��

Y2

p2

��
Y1

p1 // X
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So by definition we have a unique map g′ : Y1 → Y2, such that g′ ◦g = id. So g′ ◦g ◦h = g′,

which implies g′ = h.

Theorem 6.1.8. Any pointed A1-connected space X admits a universal pointed A1-covering X̃→
X in the category of pointed covering of X. It is (up to unique isomorphism) the unique pointed

A1-covering whose source is A1-simply connected. It is a πA
1

1 (X)-torsor over X.

Proof. Sketch of the proof (for details see [MO1] page 119, Theorem 4.8.: Let X be a pointed

A1-connected space. Let X → LA1(X be its A1-localisation. Let X̃A1 be the simplicial univer-

sal covering of LA1(X) constructed in simplicial case. It is a πA1(X) torosor from the way we

constructed it. By lemma 6.1.6 X̃A1 → LA1(X) is an A1 covering, since πA1(X) is strongly A1

invariant. Let X̃ → X be its pullback to X. This is a pointed πA1(X)-torsor and also a pointed

A1-covering by previous lemma. Our aim is to prove that X̃ → X is the pointed A1-covering.

Then it can be shown that to prove the universal property , it is enough to show that X̃→ X is

the universal object in the category of pointed A1 connected A1 coverings of X. Let Y → X be

pointed A1-covering of pointed A1-connected simplcial sheaves of sets. An let X → LA1(X) be

the A1-localisation (hence it is A1-weak equivalence). By lemma 6.1.9 we have a cartesian square

of pointed simplicial sheaves

Y //

��

Y′

��
X // LA1(X)

with Y′ → LA1(X) a pointed A1-covering. By simplicial theory we have a unique map ˜XA1 →
LA1(X). By pulling back over X gives a commutative diagram of A1-coverings:

X̃ //

��

Y

��
X

id // X

We have to show there exists a unique map X̃ → Y, making the above diagram commutative.

Suppose there exist two such maps fi for i ∈ {0, 1} then using the lemma 6.1.9 we have the

follwoing diagram

X̃
f̃i //

fi

��

X̃i

��
Y

id // Y′

Since X̃i is 1 − A1 connected and Y′ is A1-local, X̃i → Y′ is the simplcial universal pointed

covering of Y′ (and also of LA1(X)). So we have a unique isomorphism φ : X̃0 → X̃1 of pointed

simplcial covering. To show that f0 = f1, then becomes equivalent to φ ◦ f̃0 = f̃1. But then we

have a morphism ψ : X̃ → πA
1

1 (X), such that f̃1 = ψ.(φ ◦ f̃0), where . means the action induced

by ψ. Since X̃ is A1-connected, so ψ factors as X̃ → ∗ → πA
1

1 (X). But all the morphisms are

pointed, so ∗ → πA
1

1 (X) is the neutral element hence φ ◦ f̃0 = f̃1.
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Now if Y → X is a pointed A1-covering with Y 1 − A1 connected, then the morphism X̃ →
Y is an A1-weak equivalence (using the arguement above), and thus by lemma 6.1.7 it is an

isomorphism.

Lemma 6.1.9. Let Y→ X be a pointed A1-covering between pointed A1-connected spaces. Then

for any A1-weak equivalence X→ X′, there exists a cartesian square of spaces

Y //

��

Y′

��
X // X′

in which the right vertical morphism is an A1-covering ( and thus the top horizontal morphism

is an A1-weak equivalence).

Proof. [MO1], page 121, lemma 4.9.

By Postnikov tower we have the follwoing bijection for any pointed connected simplcial set

X: [X, BG]Hs,•(k)
∼= HomGr(π1(X, G). Where Gr is the vategory of sheaves of groups. If G

is a strongly A1-invariant sheaf, we get in the same way [X, BG]H•(k)
∼= HomGrA1 (πA

1

1 (X, G),

where GrA1 is the category of strongly A1-invariant sheaves of groups. It can be shown that the

inclusion GrA1 ⊂ Gr admits a left adjoint G 7→ GA1 , with GA1 := πA
1

1 (BG) = π1(LA1(BG)). So,

GrA1 has all colimits, so we have a sum too, denoted by ∗A1
and defined by , ∗A1

Gi for a family

of strongly A1-invariant sheaves of groups, ∗A1

i Gi := (∗iGi)A1 , where ∗ is the usual sum in the

category Gr.

Theorem 6.1.10. Let X be an A1-connected smooth scheme. Let {Ui}i∈I be an one covering

of X by A1-connected one subscheme which contains the base point. Assume further that each

intersection Ui
⋂
Uj is still A1-connected. Then for any strongly A1-invariant sheaf of groups G,

the follwoing diagram ∗A1

i,j π
A1

1 (Ui
⋂
Uj) ⇒ ∗A

1

i (Ui) → πA
1

1 (X) → ∗ is right exact in the category

GrA1 .

Proof. [MO1], page 123, theorem 4.12.

Theorem 6.1.11. For n ≥ 2 the canonical Gm-torsor An+1 \ {0}) → Pn is the universal A1-

covering of Pn. This defines a canonical isomorhism πA
1

1 (Pn) ∼= Gm.

Proof. by remark 6 we know that An+1 \ {0}) → Pn gives a Gm torsor, so it is an A1 covering.

As An+1 \ {0}) is simplcially 1-connected, we know by [MO1], theorem 3.38, page 104, that

An+1 \ {0}) is 1-A1-connected. Hence we have our result.

6.2 The fundamental group sheaf πA
1

1 (SLn)

In this section we will compute πA
1

1 (SLn)

Theorem 6.2.1. We have πA
1

1 (SL2) ∼= KMW
2 .
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Proof. Sketch of the proof : For n = 1, A2 \ {0} is not A1-connected, since by ([MO1, page 104,

Thm 3.40], πA
1

1 (A2 \ {0}) ∼= KMW
2 . Now we have map SL2 → A2 \ {0}, given by SL2(F ) →

A2 \ {0} (F ), for any field F over k, the matrix

(
a b

c d

)
mapping to (a, c). But then we have

a map A2 \ {0} × A1 → SL2 , defined by matrix (a, c), t maps to matrix

(
a t

c (1 + ct)/a

)

if a is nonzero, else ((0, c), t) mapping to the matrix

(
0 (−1)/c

c t

)
. The composition A2 \

{0} × A1 → SL2 → A2 \ {0}, being the canonical projection A2 \ {0} × A1 → A2 \ {0} , it

is A1 weak equivalence. Moreover the map A2 \ {0} × A1 → SL2 is a simplicial equivalence,

hence A1 weak equivalence. So the morphism SL2 → A2 \ {0} is an A1 weak equivalence. Hence

πA
1

1 (SL2) ∼= πA
1

1 (A2 \ {0}) ∼= KMW
2 .

Lemma 6.2.2. Let G be a group space which is A1-connected. Then there exists a unique group

structure on the pointed space G̃ for which the A1-covering G̃→ G is an (epi)-morphism of group

spaces. The kernel is central and canonically isomorphic to πA
1

1 (G).

Theorem 6.2.3. The universal A1-covering of SL2 admits a group structure and we get a central

extension of sheaves of groups 0→ KMW
2 → ˜SL2 → SL2 → 1.

Theorem 6.2.4. The canonical isomorphism πA
1
(SL2) ∼= KMW

2 induces through the inclusions

SL2 → SLn, n ≥ 3, an isomorphism KM
2 = KMW

2 /η ∼= πA
1

1 (SLn) = πA
1

1 (SL∞).

[MO1], page 127, theorem 4.20.

Proof.

Lemma 6.2.5. 1. For n ≥ 3, the inclusion SLn ⊂ Sln+1 induces an isomorphism πA
1

1 (SLn) ∼=
πA

1

1 (SLn+1).

2. The inclusion SL2 ⊂ SL3 induces an epimorphism πA
1

1 (SL2)→ πA
1

1 (SL3).

Proof. Sketch of the proof: Let SL′n ⊂ SLn+1 the subgroup formed by the matrices of the form

:


1 0 . . . 0

∗
... M

∗


with M ∈ SLn. The inclusion SLn ⊂ SL′n gives us SL′n as the semidirect product of SLn

and An, hence as simplcial set SL′n is the product An × SLn. The group SL′n is the isotropy

subgroup of (1, 0, ..., 0) under the right action of SLn+1 on An+1 \{0}. So we have an SL′n Zariski

torsor SLn+1 → An+1 \{0}. Where the map SLn+1 → An+1 \{0}, assigns to each matrix its first

row. This is an simplcial fibration sequence and by [MO1, page 111, theorem 3.53] this is also an

A1-fibration sequence. From this fibration sequence we get long exact sequence of A1-homotopy

groups. Now using the facts that An+1 \{0} is n−1-A1-connected and SLn ⊂ SL′n is an A1-weak

equivalence we get our result.
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6.3 Computation of πA
1

1 (P 1)

Let Gm := A1 \ {0}. Then by [MV, page 112, corollary 2.8, page 111, lemma 2.5], we have a

canonical isomorphism P 1 ∼=
∑
s(Gm) in H•(k), which is induced by the covering of P 1 by its

two standard A1’s intersecting to Gm. So we have πA
1

1 (P 1) ∼= πA
1

1 (
∑
s(Gm)). We will denote the

category of sheaves of pointed sets on Smk by Shv•. The canonical map from S → π1(
∑
s(S))

composed with the map π1(
∑
s(S))→ πA

1

1 (
∑
s(S)), for S ∈ Shv• will be denoted by θS .

Lemma 6.3.1. The morphism θS induces for any strongly A1-invariant sheaf of groups G a

bijection HomGr(πA
1

1 (
∑
s(S)), G) ∼= HomShv•(S,G).

Proof. [MO1, page 129, lemma 4.23].

From now on we will denote πA
1

1 (
∑
s((Gm)n)) by FA1(n). Our aim is to calculate FA1(1) and

show that it is not abelian.

Remark 7. 1. Let X and Y be two pointed simplicial set. We denote X ∗ Y (the reduced

join of X and Y) by the quotient of 41 × X × Y by the relations (0, x, y) = (0, x, y′),

(1, x, y) = (1, x′, y) and (t, x0, y0) = (t, x0, y0) where x0 (resp y0) is the base point of X

(resp. Y).

2. We can cover A2 \ {0} by Gm × A1 and A1 ×Gm, such that the intersection is Gm ×Gm,

which gives that A2 \ {0} is A1-equivalent to Gm ∗Gm.

3. The join C(X) := X ∗ (•) is called the cone of X. It is the smash product of 41 ∧ X, where

41 is pointed by 1. Let X ⊂ C(X) be the canonical inclusion. The quotient is (
∑
s(X)).

We dfine C ′(X) as the smash product 41 ∧ X, where 41 is pointed by 0. The join X ∗Y

contains the wedge C(X)∨C ′(X) and the quotient (X∗Y)/(X∨Y) is (
∑
s(X)×Y). Also the

quotient (X∗Y)/(C(X)∨C ′(X)) is (
∑
s(X)∨Y). So the morphism of pointed spaces X∗Y→∑

s(X)∨Y) is a simplcial weak equivalence. So using the map
∑
s(X)×Y)→

∑
s(X)∨Y) and

the map X∗Y→
∑
s(X)×Y), we get a map in Hs,•(k) : ωX,Y :

∑
s(X)×Y)→

∑
s(X)×Y).

Lemma 6.3.2. The morphism ωX,Y is equal to the morphism (p1)−1.Id∑
s(X)×Y).(p2)−1 in

Hs,•(k), where p1 is the map
∑
s(X)×Y)→

∑
s(X)→

∑
s(X)×Y) induced by the first projection,

and p2 is induced by the second projection.

Proof. [MO1, page 130, lemma 4.25].

Remark 8. 1. Let G be a sheaf of groups . There is a map of pointed simplicial sheaf of

groups (µG)′ : G × G → G, given by (g, h) 7→ g−1.h. This morphism induces a morphism

41 ×G×G→ 41 ×G, which gives a morphism ηG : G ∗G→
∑
s(G). This map is called

the geometric Hopf map of G. Now in Hs,•(k) the map G ∗G →
∑
s(G ∧G) is invertible,

so we get a map (ηG)′ :
∑
s(G ∧G)

∑
s(G).

2. By 7 the map A2 \ {0} → P 1 is same as the map (ηGm)′ :
∑
s(Gm ∧Gm)

∑
s(Gm) in H•(k).

Now G acts diagonally on G ∗ G and ηG : G ∗ G →
∑
s(G) is a G-torsor. By [MO1, page

111, theorem 3.53] the simplcial fibration G ∗ G →
∑
s(G) → BG is also an A1-fibration

sequence if πA
1

0 (G) is a strongly A1-invariant sheaf.
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So by the previous theorem we have the follwoing corollary:

Corollary 6.3.3. For any sheaf of groups G, the composition
∑
s(G×G)→

∑
s(G∧G)→

∑
s(G)

where the last map is (ηG)′, is equal in HomHs,•(k)(
∑
s(G×G),

∑
s(G)) to (

∑
s(χ1))−1.

∑
s(µ
′).(
∑
s(pr2))−1,

where χ1 is the composition pr1 : G × G → G; (g 7→ g−1) : G → G and pr2 is just the second

projection from G×G→ G.

Remark 9. Now for our case G = Gm. We have an A1-fibration sequence Gm∗Gm →
∑
s(Gm)→

BGm, which is equivalent to A2 \ {0} → P 1 → P∞ in H•(k). Now the simplcial sets P 1 and

P∞ are A1-connected, so from the long exact sequence of homotopy sheaves we get a short exact

sequence: 1 → KMW
2 → FA1(1) → Gm → 1. We have θGm : Gm → FA1(1) the section coming

from 6.3.1. As the sheaf of pointed sets FA1(1) is the product KMW
2 ×Gm, by the section θGm .

The following result entirely describes the structure of FA1(1)

Theorem 6.3.4. 1. The morphism of sheaves of sets Gm × Gm → KMW
2 induced by the

morphism (U, V ) 7→ (θ(U−1))−1θ(U−1V )(θ(V ))−1 is equal to the symbol (U, V ) 7→ [U ][V ].

2. The follwoing short exact sequence

1→ KMW
2 → FA1(1)→ Gm → 1 is a central extension.

Proof. [MO1, page 132, theorem 4.29].

Theorem 6.3.5. The sheaf of groups FA1(1) is not abelian.

Proof. By [MO1, page 132, theorem 4.29], we get θ(U)θ(V ) =< −1 > [U ][V ]θ[UV ]. Which

implies θ(U)θ(V )θ(U)−1 = h([U ][V ])θ(V ). Let for any field k, the field F = k(U, V ) be the

filed of rational functions in U and V over k. The composition of residue morphism ∂U and ∂V

commutes with multiplication by h. The image of the symbol [U ][V ] is one, and h ∈ KMW
0 (k) is

nonzero hence we have h([U ][V ]) ∈ K̄MW
2 (F ) nonzero.
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Appendix A

G-torsors and non-abelian

cohomology

Definition A.0.6. Let C be a Grothendieck site, G is a sheaf of groups on C. A G-torsor is

defined to be a sheaf of set S with a free G-action G × S → S such that S/G = ∗ in the sheaf

category. The requirement G × S → S is free means that the isotropy subgroups of G for the

action are trivial in all sections.

Let X ∈ Smk and XNis(or XZar) denotes the small site whose elements are the étale sep-

arated finite type X schemes (covering of X in Zariski topology) and morphisms are morphism

between schemes (for X ∈ ˜Smk we can also consider the morphism to be smooth).

Let G′ is a sheaf of groups on (Smk)Nis, X ∈ Smk , G′ | XNis(or G′ | XZar) is a sheaf of

groups on XNis(or XZar).

Definition A.0.7. The first cohomology H1
Nis(X;G)(or H1

Zar(X;G)) is equal to the isomorphism

classes of G-torsors on XNis(or XZar).

Lemma A.0.8. If G is a Nisnevich sheaf of groups such that for any open immersion U → V ,

the map G(V )→ G(U) is surjective, then H1
Nis(X;G) = 0.

Proof. The main step is step 1 , after that the proof follows from induction arguement.

step 1 if

p−1(U) //

��

V

p

��
U

j // X

is a Nisnevich distinguished square, and T a G-torsor on X that is trivial on U and on

V , then T is trivial. Let s in T (V ) and t in T (U). There exists g in G(p−1(U)) such

that g.(t | p−1(U)) = s | p−1(U). As G(V ) → G(p−1(U)) is onto, there exists g′ in G(V )

inducing g. Define t′ = g′.t in T (V ). The restriction of t′ and s on p−1(U) are the same,

they glue to give an element in T (X), so the torsor T is trivial.
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step 2 Then starting from a G-torsor T on a Noetherian scheme X, it is enough to show that the

restriction of T to the local schemes of X, then for any x ∈ X there will exist an open

neighbourhood Ux of x such that the restriction of T to Ux is trivial. Then we can choose

a finite set of these Ux that cover X and by induction using step 1 above we can show that

T is trivial over any finite union of these Ux.

step 3 Let X local of dimension d with closed point x. Then by induction on the dimension, for

smooth (or local or open subschemes of a local scheme) of dimension < d the restriction of

T on those schemes is trivial. This implies that for any U → X −x étale, the inverse image

of T over U is trivial. By hypothesis T is locally trivial for the Nisnevich topology, so there

exists p : V → X étale with a rational point x′ in V over x such that T restricted to V

is trivial. We can choose V so that p−1(x) = x′. Then, we have a Nisnevich distinguished

square:

(V − x′) //

��

V

p

��
(X − x)

j // X

The torsor T is trivial on V and on X − x, so step 1 implies that T is trivial over X.

Definition A.0.9. If G is a sheaf of groups on XZar (or XNis) and Z a closed subset of X, then

H1
Z(XZar;G)(or H1

Z(XNis;G)) [first cohomology group with supports in Z] can be defined as the

set of isomorphism class of G-torsors equipped with a trivialisation on X − Z.

Remark 10. If G is a Nisnevich sheaf such that for any scheme X, H1
Zar(X;G) = H1

Nis(X;G),

then for any X,Z, we also have H1
Z(XZar;G) = H1

Z(XNis;G).

Remark 11. Now, if we have a Nisnevich distinguished square, then the canonical mapH1
X−U (XNis, G)→

H1
V−p−1(U)(VNis;G) is bijective.

Remark 12. Now, in the situation considered in chapter 3 lemma 44, we have H1
v (Ov;G) =

G(F )/G(Ov). This set is isomorphic to the set H1
v ((Ov)Zar;G)(using torsors). Consider G

torsors on Spec(Ov) equipped with a trivialisation on the generic point SpecF . For any s in

G(F ), consider the trivial torsor T on Ov equipped with the trivialisation on SpecF given by

the element s of T (F ). This defines a map G(F ) → H1
v ((Ov)Zar;G) which induces a bijection

G(F )/G(Ov)→ H1
v ((Ov)Zar;G).
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Appendix B

B.G properties and A1 local

properties

Definition B.0.10. A simplicial sheaf B on Smk is called A1-local if for any simplicial sheaf Y
the map HomHs(Smk)(Y,B)→ HomHs(Smk)(Y×A1,B), induced by the projection Y×A1 → Y
is a bijection. ( A1 is the simplicial sheaf represented by the affine line ).

Definition B.0.11. Let B be a presheaf of simplicial sets on Smk, we say that it satisfies the A1-

B.G property in the Nisnevich topology if it satisfies the B.G property(5.2.2) described in chapter

4 (where the B.G class of objects are all the objects of Smk) and if moreover, for any X ∈ Smk

the map B(X)→ B(A1 ×X) induced by the projection A1 ×X → X is a weak equivalence.

Lemma B.0.12. Let B be a simplicial presheaf which satisfies the A1-B.G property in the Nis-

nevich topology and let aNis(B) be its sheafification in the Nisnevich topology. Then aNis(B) is

A1-local.
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